
11.3 Conversion between Chebyshev and Monomial
Representations of a Polynomial

A. Purpose

These subroutines convert a polynomial represented in
the monomial basis to a representation in the Chebyshev
basis, and vice versa.

B. Usage

B.1 Program Prototype, Single Precision

INTEGER N

REAL COEFF(0:≥N)

Assign values to N, and to coefficients in COEFF(). If
COEFF(i) contains coefficients of Ti(x), i = 0, 1, ..., N,
which are to be converted to coefficients of xi,

CALL SCONCM(N, COEFF)

For the inverse operation,

CALL SCONMC(N, COEFF)

B.1 Argument Definitions

N [in] The degree of the polynomial.

COEFF [inout] When calling SCONCM, COEFF(i)
contains the coefficient of Ti, i = 0, 1, ... N, on input,
and contains the coefficient of xi on output. When
calling SCONMC, COEFF(i) contains the coefficient
of xi, i = 0, 1, ..., N on input, and the coefficient of
Ti on output.

B.2 Modifications for Double Precision

Change the names SCONCM and SCONMC to
DCONCM and DCONMC respectively, and change the
REAL declaration to DOUBLE PRECISION.

C. Examples and Remarks

The program DRSCON prints out the coefficients of the
Chebyshev polynomials corresponding to xk, k = 0, 1,
..., 6, and then prints the coefficients in the monomial
basis corresponding to the Chebyshev polynomials Tk,
k = 0, 1, ..., 6. Results are in the file ODSCON.

If these subroutines are applied to a coefficient array, say
P(), obtained from SPFIT, Chapter 11.1, the zeroth or-
der coefficient is in P(3) so the call would be of the form
SCONxx(NDEG, P(3)), where xx is either CM or MC.

D. Functional Description

Consider the polynomial pn(x) of degree n,

pn(x) =

n∑
k=0

akx
k ≡

n∑
k=0

ckTk(x) (1)

where Tk(x) is the kth Chebyshev polynomial. This soft-
ware converts between the ak’s and the ck’s.

Using the well-known identities,

xTk(x) =
1

2
[Tk+1(x) + Tk−1(x)] , k > 1

xT0(x) = T1(x) = x,
(2)

we can write pn in forms intermediate between the ex-
tremes represented in Eq. (1). It is these intermediate
forms that are used in obtaining the recurrences. Thus

pn(x) =

j−1∑
k=0

akx
k + xj

n−j∑
k=0

bk,jTk(x) (3)

≡
j∑

k=0

akx
k + xj+1

n−j−1∑
k=0

bk,j+1Tk(x) (4)

Note that bk,0 ≡ ck. Using Eq. (2), Eq. (4) gives

pn(x) =

j∑
k=0

akx
k +

xj

2

n−j−1∑
k=1

bk,j+1

[
Tk+1(x)

+ Tk−1(x)
]

+ xjb0,j+1T1(x). (5)

Collecting like terms in Eqs. (3) and (5), we obtain,

aj +
1

2
b1,j+1 = b0,j

b0,j+1 +
1

2
b2,j+1 = b1,j

1

2
[bk−1,j+1 + bk+1,j+1] = bk,j , k = 2, 3, ..., n− j − 2

1

2
bk−1,j+1 = bk,j , k ≥ n− j − 1.

(6)

A more efficient recursion is obtained with bk,j replaced
by 2jBk,j . Thus,

2−jaj + B1,j+1 = B0,j

2B0,j+1 + B2,j+1 = B1,j

Bk−1,j+1 + Bk+1,j+1 = Bk,j , k = 2, 3, ..., n− j − 2

Bk−1,j+1 = Bk,j , k ≥ n− j − 1.

(7)
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In the code, the Bk−j,k share space with the original ak
or the original ck. If one starts with the ak then one runs
j from n down to 0, and otherwise j runs in the opposite
direction. Observe that the innermost loop requires only
a single addition.

E. Error Procedures and Restrictions

If n < 0, a return is made without taking any action.

F. Supporting Information

The source language is ANSI Fortran 77. Algorithm and
code by F. T. Krogh, JPL, January 1992.

Entry Required Files

DCONCM DCONCM

DCONMC DCONMC

SCONCM SCONCM

SCONMC SCONMC

DRSCON

program DRSCON
c>> 2001−05−22 DRSCON Krogh Minor change f o r making . f90 ve r s i on .
c>> 1996−06−25 DRSCON Krogh Spec i a l code f o r C convers ion .
c>> 1994−10−19 DRSCON Krogh Changes to use M77CON
c>> 1994−08−09 DRSCON WVS Remove ’0 ’ from formats
c>> 1992−03−09 DRSCON Krogh I n i t i a l Code .
c Check program fo r conver t ing between Chebyshev and monomial b a s i s .
c−−S r ep l a c e s ”?”: DR?CON, ?CONCM, ?CONMC
c

integer NMAX
parameter (NMAX=6)
integer K, N
real COEFF( 0 :NMAX)

c
c%% p r i n t f ( ” ” ) ;
c%% fo r ( k = 0; k <= NMAX; k++) p r i n t f ( ” X∗∗%1 ld ” , k ) ;
c%% p r i n t f ( ”\n” ) ;

print ’ (7X, 9 ( : ’ ’ X∗∗ ’ ’ , I1 ) ) ’ , (K, K = 0 , NMAX)
do 20 N = 0 , NMAX

do 10 K = 0 , N−1
COEFF(K) = 0 .E0

10 continue
COEFF(N) = 1 .E0
ca l l SCONCM(N, COEFF)
print ’ ( ’ ’ T ’ ’ , I1 , ’ ’ (X) =’ ’ , F7 . 3 , 8F8 . 3 ) ’ , N,

1 (COEFF(K) , K = 0 , N)
20 continue

c%% p r i n t f ( ”\n ” ) ;
c%% fo r ( k = 0; k <= NMAX; k++) p r i n t f ( ” T%1l d (X)” , k ) ;
c%% p r i n t f ( ”\n” ) ;

print ’ ( / , 6X, 9 ( : ’ ’ T ’ ’ , I1 , ’ ’ (X) ’ ’ ) ) ’ , (K, K = 0 , NMAX)
do 120 N = 0 , NMAX

do 110 K = 0 , N−1
COEFF(K) = 0 .E0

110 continue
COEFF(N) = 1 .E0
ca l l SCONMC(N, COEFF)
print ’ ( ’ ’ X∗∗ ’ ’ , I1 , ’ ’ = ’ ’ , 9F8 . 5 ) ’ , N, (COEFF(K) , K = 0 , N)

120 continue
stop
end
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ODSCON

X∗∗0 X∗∗1 X∗∗2 X∗∗3 X∗∗4 X∗∗5 X∗∗6
T0(X) = 1.000
T1(X) = 0.000 1 .000
T2(X) = −1.000 0 .000 2 .000
T3(X) = 0.000 −3.000 0 .000 4 .000
T4(X) = 1.000 0 .000 −8.000 0 .000 8 .000
T5(X) = 0.000 5 .000 0 .000 −20.000 0 .000 16 .000
T6(X) = −1.000 0 .000 18 .000 0 .000 −48.000 0 .000 32 .000

T0(X) T1(X) T2(X) T3(X) T4(X) T5(X) T6(X)
X∗∗0 = 1.00000
X∗∗1 = 0.00000 1.00000
X∗∗2 = 0.50000 0.00000 0.50000
X∗∗3 = 0.00000 0.75000 0.00000 0.25000
X∗∗4 = 0.37500 0.00000 0.50000 0.00000 0.12500
X∗∗5 = 0.00000 0.62500 0.00000 0.31250 0.00000 0.06250
X∗∗6 = 0.31250 0.00000 0.46875 0.00000 0.18750 0.00000 0.03125
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