
12.2 Multi-Dimensional Table Look Up, Interpolation,
and Differentiation

A. Purpose

Given a multi-dimensional table of independent variable
values and the corresponding dependent variable values,
this subroutine finds the points in the table closest to a
given value of the independent variable vector and uses
these points to interpolate for the corresponding value of
the dependent variable. Error estimates, different look
up methods, and the computation of derivative infor-
mation are available. Ragged tables, a generalization of
having known data defined on a grid, are supported.

B. Usage

B.1 Program Prototype, Single Precision

INTEGER NDIM, NTAB(≥ see below),
NDEG(≥NDIM), LUP(≥NDIM), IOPT(≥ k)
[k depends on options used (≥ 3).]

REAL X(≥NDIM), Y, XT(≥ see below),
YT(≥ see below), EOPT(≥IOPT(2))

CALL SILUPM(NDIM, X, Y, NTAB, XT,
YT, NDEG, LUP, IOPT, EOPT)

B.2 Argument Definitions

Data tables can be organized in two distinct ways – the
grid method and the ragged table method. The speci-
fications of NTAB(), XT(), and YT() are given in this
section for the (simpler) grid method. See Section B.3
for the ragged table method.

NDIM [in] Number of dimensions for the independent
variable, 1 ≤ NDIM ≤ 10.

X() [in] Independent vector value, x, where value of
the interpolant is desired, x = (x1, x2, ..., xNDIM).

Y [out] Value of interpolant.

NTAB() [inout] For the grid method, NTAB(i) gives
the number of points in the table data with re-
spect to the ith dimension for 1 ≤ i ≤ NDIM.
NTAB must have a declared dimension ≥ 2×
NDIM + 1. On the initial entry NTAB(NDIM+1)
must be 0. On the initial entry (signaled by
NTAB(NDIM+1) being 0) the subroutine will change
the contents of NTAB(NDIM+1) and store values in
NTAB(NDIM+2:2×NDIM+1). The user must not
alter the contents of NTAB() while continuing to do
interpolations in the same table. See Section B.3 for
ragged tables.

XT() [in] Array of independent variable values for
the tables. For the grid method the user may
store the NTAB(1) tabular values of x1 in the first
NTAB(1) locations of XT(), followed immediately
by the NTAB(2) tabular values of x2 in the next
NTAB(2) locations, etc. For each variable its val-
ues must be either in nondecreasing or nonincreasing
order, but this is not checked for. Consecutive values
listed for one variable may be equal, but this has a
special meaning as described in Chapter 12.1.

For each variable that is to be given at an equally
spaced sequence of values one can use an alternative
method of specifying the values, i.e., one can just list
two values giving respectively the first value and the
increment between values. If this is done for the ith

variable it must be signaled by setting LUP(i) = 3.
When the specification of the ith variable is abbrevi-
ated in this way the specification values for the i+1st

variable (if any) must begin in the immediately fol-
lowing location in XT().

If no entries in LUP() are set to 3 the minimal di-

mension for XT() is
∑NDIM
i=1 NTAB(i). For each i

with LUP(i) = 3, replace NTAB(i) by 2 in this sum
for determining the dimension. See Section B.3 for
ragged tables.

YT() [in] Array of dependent variable values for the ta-
bles. For the grid method the number of values to be
given in YT() and the minimal dimension for YT()
is the product of the values of NTAB(i) for i = 1,
..., NDIM. The ordering of the y values must be such
that the index of the last independent variable is ad-
vanced most rapidly. For example, when NDIM = 2
the order of the values must be

((y(x1,i, x2,j), j=1, NTAB(2)), i=1, NTAB(1))

and when NDIM = 3 the order of the values must be

(((y(x1,i, x2,j , x3,k), k = 1, NTAB(3)),

j = 1, NTAB(2)), i = 1, NTAB(1)).

See Section B.3 for ragged tables.

NDEG() [in] NDEG(i) defines the nominal degree of
the polynomial to be used in the ith dimension. The
definition for NDEG(i) is like that of NDEG in the
one-dimensional case; see the write-up for SILUP in
Chapter 12.1.

LUP() [inout] LUP(i) defines the type of look up
method for the ith dimension exactly as LUP does

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Multi-Dimensional Table Look Up, Interpolation, and Differentiation 12.2–1

for the one-dimensional case in Chapter 12.1, except
that the value 4 should not be used here..

IOPT() [inout] IOPT(1) is used to return a status as
follows:

0 Normal return, no exceptional conditions.

1 X was outside the domain of the table, extrap-
olation used.

2 Available table values were so few that this re-
stricted the degree of the polynomial.

−1 Error estimate is greater than requested error.

−2 Bad value for NDIM.

−3 Bad value for LUP(i).

−4 Bad specification for a ragged table.

−5 Ragged table does not start with a 0.

−6 Bad value inside a ragged table.

−7 Bad value at end of ragged table.

−8 Bad option index.

−9 In some dimension, the first and last XT values
are equal.

−10 Too many derivatives requested.

−11 Bad value for number of derivatives in some di-
mension.

−12 Problem with storage use in EOPT.

<−20 Had an error in SILUP. The value returned is
(the value set by SILUP) − 20.

IOPT(2) gives the dimension of EOPT. In addition
to the first location for the error estimate, and the lo-
cations in EOPT used for options, SILUPM requires
a contiguous block of storage in EOPT of length

2 ×
[
2×NDIM +

∑NDIM−1
i=1 NDEG(i)

]
+ any addi-

tional space required for temporary derivative stor-
age (see option 3 below). If you would like a mes-
sage detailing memory requirements, run the pro-
gram with IOPT(2) = 0, and everything else as it
would ordinarily be set.

Starting with IOPT(3), options are specified by in-
tegers in the range 0 to 6, followed in some cases by
integers providing argument(s) for the option. Each
option, with its arguments if any, is followed in IOPT
by the next option or by a 0. If an option index is
specified more than once, only the last specification
is used.

0 End of the option list; this must always be the
last option specified in IOPT.

1 An error estimate is to be returned in EOPT(1).

2 (Arguments: K21, ..., K2NDIM)K2i gives the
polynomial degree to use when extrapolating
with respect to the ith dimension. Documenta-
tion for SILUP (Chapter 12.1) gives the default.

3 (Arguments: K3, L3, M31, ..., M3NDIM) This
requests computation of derivatives. Let D(i1,
i2, ..., iNDIM) denote the result of differentiat-
ing P, the interpolating polynomial, i1 times
with respect to x1, i2 times with respect to
x2, ..., iNDIM times with respect to xNDIM ,
all divided by i1!i2!...iNDIM !. The ij satisfy
the restrictions Σij ≤ L3 and 0 ≤ ij ≤ M3j .
Require 0 ≤ M3j ≤ NDEG(j). Subject to
these restrictions, the D’s are stored starting
at EOPT(K3) in lexicographic order of iNDIM ,
..., i1. (Note that for XT, YT, and NTAB
the lexicographic order is in terms of putting
i1 first in the list.) Thus, for example, if
NDIM = 2, L3 = 2, and M31 = M32 = 1,
then EOPT(K3) = ∂P/∂x1, EOPT(K3+1) =
∂P/∂x2, and EOPT(K3+2) = ∂2P/∂x1∂x2.
Note that if L3 had been 1, nothing would
have been stored in EOPT(K3+2). The Lexi-
cographic ordering here was (0,1), (1,0), (1,1),
where (0,1) indicates the 0th partial with re-
spect to x2, and the first partial with respect
to x1. To clarify what we mean by a lexio-
graphic ordering, if one is getting all the deriva-
tives up to second with respect to every vari-
able, in three dimensions, the order looks like
(0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2), (0,2,0),
(0,2,1), (0,2,2), (1,0,0), (1,0,1), (1,0,2), (1,1,0),
. . . (2,2,0), (2,2,1), (2,2,2). If one only want
derivative up to a total derivative of order 2,
delete from the list, those where the sum of the
numbers is > 2.
Extra storage in EOPT is required when this
option is used, as mentioned in the description
of IOPT(2) above. Let Dj denote the space for
the total number of derivatives that must be
computed in dimension j to get the final D1

derivatives in dimension 1 (with 0th derivatives
being counted in the space). We do not have
an explicit formula for the Dj , but a recurrence
is given at the end of Functional Description
below. There must, of course, be D1 − 1 lo-
cations available starting at K3 for storing the
final result. In addition,

∑NDIM
j=2 (NDEG(j−1)+

2)(Dj − 1) locations are required for temporary
storage. If you would like a suggestion on how
much memory to set aside and what value to
assign to K3, set K3 = 0 and such a suggestion
will be printed. If K3 is set to −1 and IOPT(2)
is large enough, a value will be selected for K3,
the location in IOPT containing K3 will be set
to this value, and computation will be done as
if this value had been assigned in the first place.

4 (Argument K4) The absolute and relative

12.2–2 Multi-Dimensional Table Look Up, Interpolation, and Differentiation July 11, 2015

errors expected in YT entries are specified
in EOPT(K4) and EOPT(K4+1) respectively.
The values provided here are used in estimating
the error in the interpolation. An error estimate
is returned in EOPT(1).

5 (Argument K5) Do the interpolation to the ac-
curacy requested by the absolute error tolerance
specified in EOPT(K5). An attempt is made
to keep the final error < EOPT(K5). Stan-
dard polynomial interpolation is done, but here
NDEG() gives the maximal degree polynomial
to use in the interpolation. If EOPT(K5) ≤ 0,
IOPT(1) is not set to −1, and no error mes-
sage is generated due to an unsatisfied accu-
racy request. An error estimate is returned in
EOPT(1).

6 (Argument K6) Do not use a point in the inter-
polation if the value of the dependent variable at
that point is equal to EOPT(K6). This option
can simplify the specification of tables, if some
of the points that would naturally be included
do not have good data associated with them.
This option only affects interpolations done in
the last dimension since such interpolations are
the only ones that are based directly on YT. In-
accurate results are liable to result if valid data
points are too widely separated when doing an
interpolation in the last dimension. Thus for
example, in a 2-dimensional grid, if bad data
points tend to occur in runs that correspond to
the same value of the first variable, one would
be better off interchanging these variables.

EOPT() [inout] Array used as follows.

EOPT(1) [out] contains an estimate of the error in
the interpolation if an error estimate has been
requested.

EOPT(2:IOPT(2)) [in or out] for use by op-
tions 3–6, and for temporary storage.

B.3 Ragged Tables Defined, with Examples for
all Possible 2 and 3-Dimensional Tables

The description above gives all the information necessary
to interpolate data on a grid. Tables 1 and 2 below illus-
trate the setting of NDIM, NTAB(), XT(), and YT() for
2-D and 3-D grid cases respectively. The values shown
following the symbol “ ⇒ ” following NTAB() in these
tables are the values the subroutine computes and inserts
into the NTAB() array on the initializing call. Generally
the user need not be concerned with these values.

Here we define ragged tables and specify how to set
NTAB(), XT(), and YT() for this more general case.
The capability to interpolate ragged tables provides for

more general tables than simple grids, but requires less
storage and allows a simpler interpolation algorithm
than would be needed for general scattered data. In-
formation in this section is recommended as preparation
if one intends to understand the details in Section D.

If there is just one set of xi values where values of y are
specified then xi is said to be a grid variable, whereas if
the set of xi values where values of y are specified is dif-
ferent depending on the selection of values of one or more
of the variables with indexes j < i, xi is called a ragged
variable. This subroutine requires the first variable, x1,
to be a grid variable and further requires that all grid
variables come before all ragged variables, if any. Thus
we can define an integer ng ≥ 1 to denote the number
of grid variables, and the variables xi with i ≤ ng will
be grid variables while the remaining variables, if any,
will be ragged variables. The table is regarded as a grid
if all variables are grid variables, and as a ragged table
otherwise.

If xi is a grid variable, NTAB(i) must indicate the num-
ber of tabular values for xi, as previously described. If
xi is a ragged variable, NTAB(i) must be set to a neg-
ative value, indicating that value sets for xi depend on
the values of the variables x1 through x|NTAB(i)|. The
value of NTAB(i) is required to be −(i−1) if i < NDIM
or if i = NDIM and xNDIM is not the only ragged vari-
able, whereas if i = NDIM and xNDIM is the only ragged
variable, NTAB(i) can be any value from −1 through
−(NDIM − 1).

As a consequence of these rules there are only two dif-
ferent possibilities with NDIM = 2 and four different
possibilities with NDIM = 3. Examples of each of these
six cases are given in Tables 1 to 6, whose characteristics
are summarized in the following list:

Table NDIM NTAB(1:NDIM) Description
1 2 n1, n2 2-D grid
2 3 n1, n2, n3 3-D grid
3 2 n1, −1 2-D ragged
4 3 n1, n2, −2 3-D ragged
5 3 n1, −1, −2 3-D ragged
6 3 n1, n2, −1 3-D ragged

In the 2-D ragged table, the x2 values must be specified
depending on x1. In the 3-D tables, Tables 4 and 6 have
x2 values on a grid, and thus these values need not be
specified. In Table 5, the values of x2 depend on the
value of x1. In Tables 4 and 5, the x3 values depend on
both x1 and x2 values. In Table 6, the x3 values depend
only on x1.

Note that a 3-D table with x2 and x3 values both de-
pending only on x1 is not allowed.

July 11, 2015 Multi-Dimensional Table Look Up, Interpolation, and Differentiation 12.2–3

B.3.a Specification of NTAB() for a ragged
table

One must set NTAB(1:NDIM) as described above,
and set NTAB(NDIM+1) = NTAB(3×NDIM+1) = 0.
NTAB(NDIM+2:3×NDIM) need not be initialized.

Let r denote the index of the first ragged variable. The
sizes of the value sets for xr must be stored in NTAB()
consecutively beginning at NTAB(3×NDIM+2). There
must be one size for each possible combination of val-
ues of the variables indexed from 1 through |NTAB(r)|.
These sizes must be ordered in lexicographic order of
the indexes of the values of the variables on which they
depend.

As an example, consider Table 3 where the first ragged
variable is x2 and it necessarily depends only on x1. The
variable x1 has four values, so four sizes must be given.
These are set as 3,2,3,2 in NTAB(8:11).

As a more complicated example, consider Table 4 where
the first ragged variable is x3 and it depends on x1 and
x2. Since x1 has three values and x2 has two values the
number of combinations of values of x1 and x2 is six,
and therefore six sizes must be given for value sets for
x3. These are given as 2,3,4,3,2,3 in NTAB(11:16). This
ordering results from first fixing x1 at its first value and
running x2 through its two values, then fixing x1 at its
second value and again running x2 through its two val-
ues, and finally fixing x1 at its third value and again
running x2 through its two values.

If there are no more ragged variables the next available
location in NTAB() must be set to −1 to signal the end
of information in NTAB(). Otherwise this next avail-
able location must be set to zero and the sizes for the
next ragged variable must be stored consecutively in the
following locations.

Our only example having more than one ragged variable
is Table 5. The second ragged variable is x3 and it de-
pends on x1 and x2, with x2 itself being ragged. To
count the number of sizes needed for x3 one must make
use of the sizes already set for x2. Thus with the first
value of x1 there are 3 values for x2, while the second
and third values of x1 each have 2 associated values of
x2. Thus there is a total of 7 possible combinations of
values of x1 and x2, and so seven sizes must be given for
x3. These are given as 2,3,2,3,2,2,3 in NTAB(15:21).

B.3.b Specification of XT() for a ragged table

Value sets for the grid variables must be entered into
XT() as previously described. Immediately following
these, enter the value sets for each ragged variable. For
each ragged variable the number of values entered must
agree with the value set sizes in NTAB(). For example,
consider the value sets for x3 in Table 4. The sizes for

these sets are given in NTAB(11:16) as 2,3,4,3,2,3. The
six value sets for x3 are of these respective sizes and are
stored in XT(6:22).

If xi is a ragged variable and LUP(i) = 3, then each of
the value sets for xi must be entered in XT() as just
a pair of numbers representing the first value and the
increment. No gaps are to be left in the XT() array
between these pairs and the data for xi+1, if any.

B.3.c Specification of YT() for a ragged table

Table 1. A 2-D Grid

X1⇒ −1 2 3 8
X2⇓ Y
20 1 4 7 10
22 2 5 8 11
27 3 6 9 12

NDIM = 2
NTAB() = (4,3, 0, 0,0)

⇒ (4,3, 1000, 1,5)
XT() = (−1,2,3,8, 20,22,27)
YT() = (1,2,3, 4,5,6, 7,8,9, 10,11,12)

Table 2. A 3-D Grid

X1⇒ 3 7 8
X2⇒ 20 22 20 22 20 22
X3⇓ Y
31 1 5 9 13 17 21
33 2 6 10 14 18 22
35 3 7 11 15 19 23
36 4 8 12 16 20 24

NDIM = 3
NTAB() = (3,2,4, 0, 0,0,0)

⇒ (3,2,4, 1000, 1,4,6)
XT() = (3,7,8, 20,22, 31,33,35,36)
YT() = (1,2,3,4, 5,6,7,8, 9,10,11,12,

13,14,15,16, 17,18,19,20, 21,22,23,24)

Table 3. A 2-D Ragged Table with X2
depending on X1

X1⇒ −1 2 5 8
X2 Y X2 Y X2 Y X2 Y
20 1 21 4 20 6 21 9
22 2 28 5 24 7 27 10
27 3 28 8

NDIM = 2
NTAB() = (4,−1, 0, 0,0, 0, 0,3,2,3,2,−1)

⇒ (4,−1, 1, 1,5, 7, 0,3,5,8,10,−1)
XT() = (−1,2,5,8, 20,22,27, 21,28, 20,24,28, 21,27)
YT() = (1,2,3, 4,5, 6,7,8, 9,10)

12.2–4 Multi-Dimensional Table Look Up, Interpolation, and Differentiation July 11, 2015

The y values must be listed in YT() in lexicographic
order of the indexes of the independent variables. For
example, if NDIM = 3, YT(1) must be the value of y
associated with the first value of x1, the first value of x2
allowed to occur with this value of x1, and the first value
of x3 allowed to occur with these values of x1 and x2. If
there are more values of x3 allowed to occur with these
values of x1 and x2 then the values of y associated with
these combinations of values would come next in YT().
The setting of the YT() array is illustrated in Tables 1 –
6. In these tables both the initial and the final contents
of NTAB() are given.

Table 4. A 3-D Ragged Table with X3 depending on X1 and X2

X1⇒ 3 7 8
X2⇒ 20 22 20 22 20 22

X3 Y X3 Y X3 Y X3 Y X3 Y X3 Y
30 1 31 3 31 6 30 10 32 13 30 15
39 2 35 4 33 7 35 11 39 14 36 16

38 5 36 8 39 12 38 17
38 9

NDIM = 3
NTAB() = (3,2,−2, 0, 0,0,0, 0,0, 0,2,3, 4,3, 2,3, −1)

⇒ (3,2,−2, 3, 1,4,6, 10,10, 0,2,5, 9,12, 14,17, −1)
XT() = (3,7,8, 20,22, 30,39, 31,35,38, 31,33,36,38, 30,35,39, 32,39, 30,36,38)
YT() = (1,2, 3,4,5, 6,7,8,9, 10,11,12, 13,14, 15,16,17)

Table 5. A 3-D Ragged Table with X2 depending on X1, and X3 depending on X1 and X2

X1⇒ 3 7 8
X2⇒ 20 25 29 21 29 20 28

X3 Y X3 Y X3 Y X3 Y X3 Y X3 Y X3 Y
31 1 30 3 32 6 30 8 31 11 31 13 30 15
39 2 35 4 37 7 34 9 37 12 38 14 36 16

38 5 38 10 39 17
NDIM = 3
NTAB() = (3,−1,−2, 0, 0,0,0, 0,0, 0,3,2,2, 0,2,3,2, 3,2, 2,3, −1)

⇒ (3,−1,−2, 2, 1,4,11, 10,14, 0,3,5,7, 0,2,5,7, 10,12, 14,17, −1)
XT() = (3,7,8, 20,25,29, 21,29, 20,28, 31,39, 30,35,38, 32,37, 30,34,38, 31,37, 31,38, 30,36,39)
YT() = (1,2, 3,4,5, 6,7, 8,9,10, 11,12, 13,14, 15,16,17)

Table 6. A 3-D Ragged Table with X3 depending only on X1

X1⇒ 3 7 8
X2⇒ 20 22 20 22 20 22

X3 Y X3 Y X3 Y
30 1 3 31 5 8 30 11 13
38 2 4 35 6 9 39 12 14

39 7 10

NDIM = 3
NTAB() = (3,2,−1, 0, 0,0,0, 0,0, 0,2,3,2, −1)

⇒ (3,2,−1, 1, 1,4,6, 10,10, 0,2,5,7, −1)
XT() = (3,7,8, 20,22, 30,38, 31,35,39, 30,39)
YT() = (1,2, 3,4, 5,6,7, 8,9,10, 11,12, 13,14)

B.4 Getting Output of Tables

As verification that things have been set up correctly it
can be helpful with complicated ragged tables to see how
things are laid out. This data can be seen with a call
vary similar to that for SILUPM. Just prior to the call
to SILUPM,

CALL SILUPMD(NDIM, X, Y, NTAB, XT,
YT, NDEG, LUP, IOPT, EOPT)

This can result in a lot of output, so if possible it may
work best for you if you reduce the size of the tables
while keeping the logical structure intact.

July 11, 2015 Multi-Dimensional Table Look Up, Interpolation, and Differentiation 12.2–5

B.5 Modifications for Double Precision

Change SILUPM to DILUPM, SILUPMD to DILUPMD
and the REAL type statement to DOUBLE PRECI-
SION.

C. Examples and Remarks

DRSILUPM below is a sample program that does in-
terpolation in a table of sin(x1x2) given with a spac-
ing of 0.08 in x1 and a spacing of 0.12 in x2, degree 8
in x1 and degree 10 in x2, and obtains an error esti-
mate. ODSILUPM below gives the results of running
DRSILUPM on an IBM PC.

Section C of Chapter 12.1 applies here also. In particular
a discontinuity occurring at xi = di can be indicated by
having successive XT() values associated with xi = di.

D. Functional Description

Interpolations are done by doing nested one dimensional
interpolations in the coordinate directions. First the
XT() values to be used depending on the value of x1
are determined. Then the values of XT() for the value
of x2 are determined, etc. For ragged tables, the values
of some of the XT() that are to be used depend on in-
dexes selected for lower indexed XT()’s. After the base
pointer to XT() and YT() is determined for the last di-
mension, NDIM, a one dimensional interpolation is done
in dimension NDIM. This provides one function value for
the next lower dimension, and other values are obtained
in a similar way by varying the index in the next to the
last dimension. This process gives function values that
can be interpolated to provide a function value for the
next lower dimension, etc.

Let nj = NTAB(j), j = 1, 2, ..., NDIM. The nj must
satisfy:

If nk > 0, then nj > 0 for j < k, and nk gives the num-
ber of data points in dimension k.

If nk < 0, then information for the current dimension
depends on dimensions with indexes from 1 to |nk|.
If k 6= NDIM then nk = −k + 1, else 1 ≤ |nk| <
NDIM.

Tables with an nk < 0 are called ragged, others are said
to have data defined on a grid. When data are defined
on a grid, no extra information is required. In the ragged
case, the number of XT() values and their values depend
on the indexes from dimensions with a smaller index.
The user must provide this information. So users with
data on a grid don’t have to deal with the complexities
of the ragged case, we give the formula for finding XT()
data although for the case of ragged tables some of the

symbols used rely on things defined later. Let

ξk =


2 LUPk = 3, nk > 0

nk LUPk 6= 3, nk > 0

2µk LUPk = 3, nk < 0

Sk,µk
LUPk 6= 3, nk < 0

(1)

then XT() data for interpolation with respect to the kth

dimension starts in

XT

1 + ηk +

k−1∑
j=1

ξj

 , where (2)

ηk =


0 if nk > 0

2 (p−nk
+ i−nk

− 1) if nk < 0 & LUPk = 3

p1−nk
if nk < 0 & LUPk 6= 3

(3)

On the first call to the program, NTAB(NDIM+1) is set
to |nk|, where k is the first index for which nk < 0 (or
to 1000 if all nk > 0), and NTAB(NDIM+k+1) is set to

1 +
∑k−1
j=1 ξj , k = 1, 2, ..., NDIM. User’s with data on a

grid need not know about µ, p, S or anything else beyond
this point.

Ragged tables require information on the nature of the
raggedness. This information must be supplied in what
we call lexicographic order. The first data supplied are
for the rth dimension, where r is the index of the first
dimension that is ragged. Let e = |NTAB(r)|, and the
indexes selected from dimensions 1 to e be (i1, i2, ...,
ie). The data Kr,j supplied for this dimension define the
number of YT() values defined for all the possible values
of the indexes from dimensions 1 to e. Kr,0 must be 0,
and Kr,1 is the number of YT() values that correspond
to having i1, ..., ie = 1, Kr,2 to having ie = 2, and all
of the rest 1, etc. That is a lexicographic ordering of
the indexes (i1, ..., ie). Following the data for dimension
r comes the data for dimension r + 1, if any, etc. To
enhance error checking, the K’s for the last dimension
must be followed by −1. To describe how the program
keeps track of this information we introduce some addi-
tional notation. Let µk denote the index of the last j for
the Kk,j . Then

µk =


−1 if nk > 0∏e
j=1 nj if k = r

Sk−1,µk−1
if k > r, where

(4)

Sk,j =

j∑
m=0

Kk,m, j = 0, 1, ..., µk. (5)

The Sk,j replace the Kk,j in storage. Let L1 = 3 ×
NDIM + 1, and Lk = Lk−1 + µk + 1, k > 1. Initially
NTAB(Lk + j) contains Kk,j ; these are replaced by the

12.2–6 Multi-Dimensional Table Look Up, Interpolation, and Differentiation July 11, 2015

Sk,j on the first call. Lk is stored in NTAB(2×NDIM +
k + 1), k = 1, 2, ..., NDIM − 1. With what has been
defined so far, it is now possible to compute the values
stored in NTAB(NDIM+k+1) as described just below
Eq. (3).

The notation introduced below defines the rest of the in-
formation required to find the XT() values as well as the
values of YT() to be accessed in the one dimensional in-
terpolations. In both cases the data are in lexicographic
order as defined above and this is all the user need know
in order to save the required information. As above, let
nr be the first nk < 0, e = −nr, and define pk to be
a pointer for accessing information that depends on the
indexes i1, i2, ..., ik−1. Recall that if r 6= NDIM, then
e = r − 1. With

p1 = 0

pk+1 = nk+1 (ik − 1 + pk) , k = 1, 2, ..., e− 1

pe+1 = Sr,pe+ie−1, and for k = e+ 1, ..., NDIM− 1,

pk+1 =


nkpk + (ik − 1) (Sr,pe+ie − Sr,pe+ie−1) ,

r = NDIM,

Sk+1,pk+ik−1, r 6= NDIM,

(6)

the value of YT() corresponding to (i1, i2, ..., iNDIM)
is in YT(pNDIM + iNDIM), and YT(pNDIM + 1) is passed
to the one-dimensional interpolation routine along with
the XT() as defined by Eqs. (2), (3) and (6).

To compute the storage required for computing and stor-
ing derivatives, let mi,k denote the number of derivatives
in dimension i with the sum of derivative orders exactly
k, Mi,k =

∑k
j=0mi,j , and ti = the number of deriva-

tives with respect to xi. Since we start by computing
derivatives in the last dimension, NDIM, mNDIM,k = 1
for k ≤ tNDIM, and is 0 otherwise. Also, mi,0 ≡ 1 since

there will be exactly one interpolated value. Differenti-
ating the results from a higher dimension 0, 1, ..., min(k,

ti) times gives mi,k =
∑k
j=max(0,k−ti)mi+1,j , and with

the convention that Mi,k = 0 for k < 0,

Mi,k = Mi,k−1 +Mi+1,k −Mi+1,k−ti−1 (7)

Let `i = min{
∑NDIM
j=i tj , L3 (from options)}. Then the

desired recursion for computing the Mi,k is given by

Mi,0 = 1 (8)

Mi,k = Mi,k−1 +Mi+1,k −Mi+1,k−ti−1, k = 1, 2, ..., `i.

The Di referred to in the description of option 3 are
given by Di = Mi,`i .

E. Error Procedures and Restrictions

Values of IOPT(1) < 0 ordinarily cause an error mes-
sage to be printed, and those < −2 do not ordinarily
result in a return to the user. One can change the action
on errors by calling the message/error routine MESS of
Chapter 19.3 before calling this routine.

F. Supporting Information

The source language is ANSI Fortran 77.

Entry Required Files

DILUPM AMACH, DILUP, DILUPM, DILUPMD,
DMESS, MESS, OPTCHK

SILUPM AMACH, MESS, OPTCHK, SILUP,
SILUPM, SILUPMD, SMESS

Subroutine designed and written by Fred T. Krogh, JPL,
May 1991. SILUPMD added, Fred T, Krogh Math à la
Carte, May 2006.

July 11, 2015 Multi-Dimensional Table Look Up, Interpolation, and Differentiation 12.2–7

DRSILUPM

program drs i lm
c>> 2001−05−22 DRSILM Krogh Minor change f o r making . f90 ve r s i on .
c>> 1994−10−19 DRSILM Krogh Changes to use M77CON
c>> 1992−03−04 DRSILM Krogh I n i t i a l Code .
c−−S r ep l a c e s ”?”: DR?ILM, ?ILUPM
c Demonstration d r i v e r f o r SILUPM.
c Given a t a b l e o f s in (xy) , f o r x = 0 , .08 , .16 , . . . , and y = 0 , .12 , .2
c . . . i n t e r p o l a t e s f o r (x , y) = (2 .7 , −.1) , (. 93 , . 05) , (. 765 , . 87) and
c ob t a in s an error e s t imate .
c

integer ND1, ND2, NDEG1, NDEG2, NUMTAB, NDIM, NX, NDIMT, NEOPT
parameter (ND1=50, ND2=40, NDEG1=8, NDEG2=10, NUMTAB=ND1∗ND2,

1 NDIM=2, NX=3, NDIMT=2∗NDIM+1, NEOPT=2∗(2∗NDIM+NDEG1)+1)
integer I , J , IOPT(4) , NTAB(NDIMT) , NDEG(NDIM) , LUP(NDIM)
real X1(NX) , X2(NX) , YT(NUMTAB) , YT2(ND2, ND1) ,

1 XT(2∗NDIM) , X(NDIM) , Y, EOPT(NEOPT) , H1 , H2 , ANS
parameter (H1 = .08E0 , H2 = .12E0)
equivalence (YT, YT2)
data X1 / 2 .7E0 , . 93E0 , .765E0 /
data X2 / −.1E0 , . 05E0 , . 87E0 /

c Set IOPT to ge t an error e s t imate .
data IOPT / 0 , NEOPT, 1 , 0 /
data NTAB(1) , NTAB(2) , NTAB(3) / ND1, ND2, 0 /
data NDEG, LUP / NDEG1, NDEG2, 3 , 3 /

c
c Compute the XT and YT t a b l e s

XT(1) = 0 . E0
XT(2) = H1
XT(3) = 0 . E0
XT(4) = H2
do 20 I = 1 , ND1

do 10 J = 1 , ND2
YT2(J , I) = sin (real ((I −1)∗(J−1)) ∗ H1 ∗ H2)

10 continue
20 continue

print ∗ ,
1 ’IOP(1) X1 X2 Y Est . Error True Error ’
do 50 I = 1 , NX

X(1) = X1(I)
X(2) = X2(I)
ANS = sin (X(1)∗X(2))

ca l l SILUPM (NDIM,X,Y,NTAB,XT,YT,NDEG,LUP, IOPT,EOPT)
print ’ (I5 , 2F9 . 4 , F12 . 8 , 1P, E10 . 2 , E11 . 2) ’ ,

1 IOPT(1) , X1(I) , X2(I) , Y, EOPT(1) , Y − ANS
50 continue

stop
end

ODSILUPM

IOP(1) X1 X2 Y Est . Error True Error
1 2 .7000 −0.1000 −0.26674423 1 .38E−04 −1.28E−05
0 0 .9300 0 .0500 0.04648303 3 .82E−07 −2.12E−07
0 0 .7650 0 .8700 0.61749178 1 .79E−07 −5.96E−08

12.2–8 Multi-Dimensional Table Look Up, Interpolation, and Differentiation July 11, 2015

	Multi-Dimensional Table Look Up, Interpolation, and Differentiation
	Purpose
	Usage
	Program Prototype, Single Precision
	Argument Definitions
	Ragged Tables Defined, with Examples for all Possible 2 and 3-Dimensional Tables
	Getting Output of Tables
	Modifications for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

