
13.0 Effective Use of the Quadrature Software

A. Introduction

The quadrature software in MATH77 is designed to be
efficient and reliable even if the user does nothing spe-
cial. For most one dimensional problems, one will get
quite satisfactory results without taking any special care,
even for most of the special cases discussed below. But if
function values are expensive or one is computing a large
number of related integrals, and particularly in the case
of multi–dimensional integrals, one can obtain benefits
in accuracy, efficiency, and/or reliability by making use
of the ideas discussed below.

The sections which follow consider the following.
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B. Analytic Integration

One should not overlook the possibility of using a com-
puter algebra system to obtain an integral, part of a
multiple integral, or even part of a single integral in or-
der to obtain a better behaved function for the numerical
integration.

Frequently an integral can be reduced to a special func-
tion such as those in Chapter 2 of MATH77. The rou-
tines for computing these functions should be both more
reliable and more efficient than doing the integration nu-
merically.

C. Estimating Noise Levels

Options 4 and 5 in the quadrature routines allow one to
provide an estimate of the absolute and relative errors
in computing the function, respectively. The quadrature
routines attempt to make an estimate of these errors if
no data are provided by the user, but it is very diffi-
cult to tell the difference between a noisy function, and
a function which just needs to be sampled on a finer
mesh. If you know of cancellation errors, or if the func-
tion values are obtained from another computation for
which error estimates are available, or if part of the func-
tion is computed using a table lookup which is known to
have errors of a certain level, you will reduce the risk of

the quadrature routine working much harder than nec-
essary if you provide this information. Note than the
multiple quadrature routine works by applying the one
dimensional routine to the results of applying the one di-
mensional routine to an inner integral which in turn may
be the result of applying the one dimensional routine to
yet another inner integral, etc. In this case the routines
know of the error estimates from the interior quadrature
and make use of these estimates in estimating the value
of these parameters for the outer integrations.

D. Multi–dimensional Quadrature

The cost of computing typically goes up very rapidly
with the dimension. The routines that we provide are
meant to be used primarily for one, two, and three di-
mensional integrals. They may be appropriate for some
higher dimensional problems, particularly if one has an
irregular boundary, or outer integrals are functions of in-
ner integrals. Effective integration of high dimensional
integrals requires scattering the points in a way that is
not possible with the approach used in the MATH77 rou-
tines. Most commonly such problems are attacked using
Monte Carlo methods, preferably with serious thought
given to methods for reducing the variance. For regular
regions, the methods in [1] and [2] are likely to be a good
choice when they apply. Also see the very nice review
article by Spanier and Maize [3], and the recent book by
Sloan and Joe [4].

When using the routines in MATH77 don’t forget that
singularities may be introduced by the form of the
boundary, and that all singularities are best removed
if at all possible.

E. Dealing with Singularities

The methods used in the MATH77 routines are based
on approximating the function by a polynomial interpo-
lating the function at judiciously chosen points. Unfor-
tunately polynomials do not do a good job of approx-
imating certain functions. If the function has an infi-
nite low order derivative some place near the interval
of integration (including off the real line in the com-
plex plane), taking some action to remove (or weaken)
the singularity can make a big difference in performance.
Thus, let f(x), the function being integrated, have the
form f(x) = u(x)s(x), where u is the unsmooth part,
and s is the smooth part. Some examples for u(x) are
(x− a)α, (x2− a2)α, log(x− a), and 1/(x2 + a2), where
α is not an integer, and the singularity is at a in all but
the last case where the singularity is at ±ia and a is
presumably small relative to the length of the interval.
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It may not always be clear how to split functions. For
example, given a factor of

√
x2 − a2 one might set u(x)

to this factor, or one might set u(x) =
√
x− a and let

s(x) contain the factor
√
x+ a (assuming x and a are

both positive).

When there are singularities in the middle of the range
of integration, even if one does nothing else, one is better
off to break the interval in two pieces so all singularities
occur at the endpoints of the interval of integration. If
there are singularities at both endpoints, it is best in
most cases to break the interval in the middle, so that
all one is ever dealing with in a single numerical integra-
tion is a function with a singularity at a single end point.
If you have something like a factor of 1/

√
p(x), where p

is a polynomial, take the trouble of finding the roots of
p and break up the interval of integration so that there
are no internal singularities.

The first of the three approaches we consider takes ad-
vantage of the fact that the unsmooth part of a func-
tion frequently can be integrated analytically. Following
Krylov [5, p.203]

f(x) = f1(x) + f2(x), where

f1(x) = u(x)

k−1∑
j=0

s(j)(a)

j!
(x− a)j

f2(x) = u(x)

s(x)−
k−1∑
j=0

s(j)(a)

j!
(x− a)j

 .
Assuming the required derivatives of s can be computed
and that the integral of f1 can be computed analytically,
one has the simpler problem of integrating f2. The sin-
gularity has been weakened by increasing the order of the
first infinite derivative by k. This can make a significant
difference in performance.

Lether [6] discussed this approach in more detail for the
case when the singularity is not on the real axis.

The second approach is to make a change in variable
that weakens the singularity. This approach has the ad-
vantage that when it works it can remove the singularity
entirely. It has the disadvantage that the appropriate
transformation may be difficult to find, such a transfor-
mation may not exist, and when one is some distance
from the singularity, one may be better off without the
transformation.

Consider∫ b

a

(x− a)αs(x) dx.

With ξ = (x− a)1/β , (x = a+ ξβ) this is transformed to∫ (b−a)1/β

0

ξβ(α+1)−1s(βξβ−1 + a) dξ.

In order to get a “nice” integral, we would like to have
both β(α + 1) − 1, and β − 1 be small positive inte-
gers. β = 2 satisfies these conditions for both α = −1/2
and for α = 1/2. The one dimensional subroutines
in MATH77 make this kind of transformation (once or
twice) when they think they have determined there is
a singularity at a. Note that β = 2 weakens all singu-
larities at a. But a better choice when α = k/3 (k a
small integer ≥ −2) is β = 3, which you will have to do
yourself if you want it.

The third approach is not to use the MATH77 routines,
but to develop your own quadrature formula (and rou-
tine) using u(x) as a weight function as discussed in
“Special Weight Functions” below.

F. Iterated Integrals

Since∫ b

a

∫ x

a

· · ·
∫ x

a

f(x)(dx)k+1 =

∫ b

a

(b− x)k

k!
f(x)dx,

one should never treat the left hand side as a multiple
integral when one can just as easily integrate the right
hand side as a one–dimensional integral. (One can get
this result using repeated integration by parts.)

G. Infinite Range

Consider (one can always translate the integrations vari-
able to start at 0)∫ ∞

0

f(x) dx

and assume there is a monotone strictly decreasing func-
tion ϕ(x) which decreases with a rate somewhat like that
for |f |, preferably providing some reasonable approxima-
tion to an upper bound for |f(x)| for large x. Once again
we offer three approaches.

From ones knowledge of ϕ, or by sampling f(x) for large
x, determine a value for X such that

∣∣∣∫ X

0

f(x) dx−
∫ ∞
0

f(x) dx
∣∣∣ < .5× (error required).

Then use the finite integral as an approximation for the
infinite integral, asking for enough additional accuracy in
integrating it to compensate for the reduction in range.
If one uses this approach one should not pick X so large
that f has underflowed to 0. The one–dimensional rou-
tines make checks for discontinuities, both for enhanced
reliability, and to encourage users to provide functions
which are smooth, which greatly improves the efficiency
of the integration. If f has underflowed, f appears to
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be a flat 0 for a part of the interval, with an infinite rel-
ative jump at some point to a nonzero value. Locating
the point of this discontinuity is time consuming and the
resulting diagnostic is liable to be confusing to someone
even if it isn’t to you. Since the integration of this kind of
problem will typically require a wide range in the mesh,
the integration will probably not be as efficient as one
might hope for.

The second approach involves making a change of vari-
able. Assume that we have selected ϕ(x) so that ϕ(∞) =
0, and the inverse function is known and differentiable.
Let ξ = ϕ(x) and we have∫ ∞

0

f(x) dx =

∫ ϕ(0)

0

−dϕ
−1(ξ)

dξ
f(ϕ−1(ξ)) dξ.

Examples of different ϕ’s are given in the table below.
We assume that by a crude approximation over a wide
range of x, that any required values of α and β have been
estimated.

ϕ(x) ϕ(0) −
dϕ−1(ξ)

dξ
ϕ−1(ξ)

α

1 + β ∗ x2
α/β

αβ3/2

2ξ3/2
√
α− ξ

√
α− ξ
βξ

e−α(x−β) eαβ 1/αξ
− log(ξ)

α
+ β

e−α(x−β)
2

e−αβ
2 1

2αξ

√
−α
log ξ

√
− log(ξ)/α+ β

The hope is that f(ϕ−1(ξ)) will cancel the part of the
denominator that is going to 0 as ξ approached 0. This
cancellation can be done analytically if possible, other-
wise it may be best to fudge the 0 to a slightly larger
number. It should also be noted that these transforma-
tions may be useful anytime the limits on the original
integral are widely separated. If these limits are a and b,
then in the transformed integral the limits are φ(b) and
φ(a).

There are two problems suggested by the above table.
First, if one can not do some cancellations analytically,
there may be problems with underflow in the denomi-
nator. Second, the transformation is introducing a sin-
gularity which one should probably deal with as is de-
scribed in the section “Dealing with Singularities” above.
Finally, we should note that we have essentially no expe-
rience using this approach and would appreciate hearing
of your experience if you should try it.

The third approach, is to use a weight function as de-
scribed below. This approach can not be used with the
MATH77 software.

H. Special Weight Functions

Here we are concerned with the integration of functions
of the form∫ b

a

w(x)f(x) dx,

where w(x) is called the weight function, and f(x) is pre-
sumably a fairly well behaved function that it is reason-
able to approximate with a polynomial. In some of the
cases listed below, one could choose to integrate part of
the interval using special formulas designed to cope with
the singularity in w, and integrate the rest of the interval
using the one dimensional routines provided here.

In [7] we find the following cases listed

Name w(x) Interval

Moments xk (0, 1)√
b− y (a, b)

1/
√
b− y (a, b)

1/
√

1− x2 (−1, 1)

1/
√

(x− a)(b− x) (a, b)√
1− x2 (−1, 1)√

(x− a)(b− x) (a, b)√
x/(1− x) (−1, 1)√

(x− a)/(b− x) (a, b)
log x (0, 1)

Laguerre e−x (0,∞)

Hermite e−x
2

(−∞,∞)
Filon cosωx (a, b)
Filon sinωx (a, b)

If you would like to derive your own formulas, partic-
ularly if you would like formulas with a built-in error
estimate, we recommend the algorithm of Patterson [8].

I. Indefinite Integrals

The quadrature routines in MATH77 are not designed
to be useful for indefinite integration. Instead of solving∫ t

a

f(t) dt,

one can solve the differential equation

y′ = f(t), y(a) = 0.

If one of the routines in Chapter 14.1 is used for this
purpose, one should skip the evaluation of f(t) when the
corrected derivative is being computed. This approach
can also be useful for a definite integral when f(t) is a
vector valued function and computations for some of the
components can be reused in others.

When solving Volterra integral equations, if one can
weaken singularities in f sufficiently (perhaps using
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other techniques in this chapter), so that using a uni-
form mesh is appropriate, we believe formulas based on
using the trapezoidal rule with difference corrections are
a reasonable choice. See [9, pp. 155–156] for the dis-
cussion on Gregory’s formula and the Gauss summation
formula. Probably the easiest way to derive the appro-
priate formulas near the end of the interval is to think
in terms of using the Gauss summation formula for all
points, but using polynomial extrapolation to obtain the
differences that would otherwise require using a function
value outside the interval. (We find it most convenient
to think of the mean central differences as the average
of backward differences at two other points and to use
the fact that ∇kfn = ∇kfn+1 − ∇k+1fn+1 to get val-
ues for the differences near the left endpoint, and to use
∇kfn+1 = ∇kfn+1−∇kfn near the right endpoint.) The
difference between the result at two interior points can
be expressed in terms of the difference between mean
central differences at two different points, giving a band-
width of k+ 3 if the last difference used is the kth mean
central difference, µδkf .

J. Cauchy Principal Values

Suppose f has a single singularity at x = ξ in the interval
[a, b], and that although the integrals∫ ξ

a

f(x) dx, and

∫ b

ξ

f(x) dx

don’t exist, cancellation is such that the limit

lim
ε→0

(∫ ξ−ε

a

f(x) dx+

∫ b

ξ+ε

f(x) dx
)

does exist. This limit is called the Cauchy principal value
of the integral. If you can, use the first approach in Sec-
tion E for dealing with singularities, so that the Cauchy
principal value does not need to be computed numeri-
cally. (Keep in mind that the problems with cancella-
tion error mentioned below will still be present.) Else,
we propose the following (untried) method for solving
such problems.

First determine ξ as accurately as possible, i.e. down
to the last bit. The zero finding program DZERO in
Chapter 8.1 applied to 1/f could be used for this pur-
pose. Assuming ξ is closer to a than to b (with obvious
modifications in the opposite case), compute

I1 =

∫ a−ξ

0

[f(ξ + x) + f(ξ − x)] dx,

using DINT1, the double precision one–dimensional
quadrature program. If it is convenient, compute the
sum in such a way as to minimize the cancellation that

arises in summing the f values. Sometimes this might
be done analytically, sometimes one might be able to
do the calculation of the f ’s near ξ in an extended pre-
cision. One should also let DINT1 know how large the
absolute error in the integrand can be, since when f gets
large there is going to be more cancellation than DINT1
would expect from the value of the difference. Because of
the problems with cancellation error, it is probably best
to allocate most of the allowable error to computing I1.

Then compute

I2 =

∫ b

2ξ−a
f(x) dx,

using DINT1, with option 11 to indicate there is a sin-
gularity at x = ξ. If the singularity is close to a, one
should probably use a negative value for the K11 associ-
ated with this option.

The final result is of course given by I1 + I2.

K. Undefined Integrals

We don’t have much to say here except that when deal-
ing with extremely complicated expressions, it is quite
possible to end up defining a problem for which the in-
tegral does not exist. If you should do this you may get
a diagnostic telling you that this is the case, but then
again you may not. It is not easy to tell the difference
between an integrand with a narrow very high peak, and
one that goes off to infinity. But if you don’t get the di-
agnostic you should observe that the integral seems to
be very hard to compute, and the accuracy is terrible.
When this happens to you at least consider the possibil-
ity that you have defined a problem whose best solution
is “define a different problem.” You may also get the
diagnostic that the integrand is not integrable when in
fact it is, however your first inclination should be to trust
the diagnostic.
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