
14.3 Solve a Differential/Algebraic System

A. Purpose

This routine solves a system of differential/algebraic
equations of the form g(t,y,y′) = 0. Backward differ-
entiation formulas, see [1], and a projection algorithm
are used to solve for y and y′ as t varies from an ini-
tial T to TOUT. The system g() = 0 consists of NEQ
component functions F(t,y,y′) = 0 of index 1 or index
0, followed by constraint functions G(t,y) = 0. Details
are provided in the report, [2]. The code here is a mod-
ification of Petzold’s code DASSL.

B. Usage

Described below under B.1 through B.x are:

B.1 Setting up for double precision usage . . . . . . . . . 1
B.1.a The Calling Routine . . . . . . . . . . . . . . . . . . . . . 1
B.1.b Argument Definitions . . . . . . . . . . . . . . . . . . . . 1

B.2 The user supplied subroutine for
computing problem data . . . . . . . . . . . . . . . . . 2

B.3 Setting options using the array INFO . . . . . . . 4
B.4 Using Reverse Communication . . . . . . . . . . . . . . . 6
B.5 Modifications for single precision . . . . . . . . . . . . . 6
B.6 Optional Norm Routine . . . . . . . . . . . . . . . . . . . . . . 6
B.7 Values of IDID on Return from DDASLX . . . 6
B.8 Values of RWORK and IWORK on exit . . . 7
B.9 Getting Debug Print After Starting . . . . . . . . . . 7
B.10 Computing Starting Values for Derivatives . . 8

The code provides a number of options specified by an
array INFO. The following summary gives the index in
INFO and the page number, followed by very brief de-
scription of the option.

2 4 Type of error control
3 4 Intermediate output
4 4 no evaluations past TSTOP
5 4 Type of matrix
6 5 Level of debug print
7 5 Maximum step size
8 5 Initial step size
9 6 Restrict integration order

10 6 Constraints to project onto
11 6 Integrator solves for initial derivatives
12 6 Max. number steps between output points
13 6 Step size control algorithm

The example codes illustrate features added to DASSL.
The additional features include:

• Optionally provide a linear equation solver tailored for
this application

• Optionally project onto constraints after a successful
integration step. This feature is primarily intended
for application to constraints which are differentiated

to reduce the index of the problem. Differentiating
is required to reduce the index to 1 (0 is even better)
and we recommend this option when this is done.

• Use step selection logic that provides smoother error
control

• Provide all problem data (partials, residuals, linear
solver) in one user-written evaluation routine.

• Optionally provide problem data with a “reverse com-
munication” interface

The routine uses forward or reverse communication to
obtain required values of g(t,y,y′), partial derivative
information, and to perform user-defined linear algebra
computations. There is a default dense or banded matrix
solver used – Linpack [3] – unless a replacement is pro-
vided. The projection algorithm by default uses Givens
rotations to solve an under determined system.

B.1 Program Prototype for DDASLX, Double
Precision

B.1.a The Calling Routine

EXTERNAL DDASF

DOUBLE PRECISION T, Y(≥NEQ),
YPRIME(≥NEQ), TOUT, RTOL(≥1 or
NEQ), ATOL(≥1 or NEQ), RWORK(=LRW)

INTEGER NEQ, INFO(N ≥16), IDID, LRW,
IWORK(=LIW),LIW

The user must assign values to T, Y(1:NEQ),
YPRIME(1:NEQ) and TOUT. Set flags in array
INFO(:) and assign values of ATOL(:) and RTOL(:).

DO
CALL DDASLX(DDASF, NEQ, T, Y,

YPRIME, TOUT, INFO, RTOL, ATOL,
IDID, RWORK, LRW, IWORK, LIW)

{Exit when finished.}
END DO

Computed quantities are returned in T, Y(:), and
YPRIME(:).

B.1.b Argument Definitions

DDASF [external] The name of the routine providing
system information, g(t,y,y′), system derivative in-
formation (optional), D = (∂g/∂y)+c(∂g/∂y′), and
(optionally) solving systems of linear equations. The
integrator-provided value c depends on the stepsize
and method. A description of this interface is given
below. Use this dummy name when reverse commu-
nication is used for all system information.

NEQ [in] The number of equations to be solved.
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T [inout] The current value of the independent variable
t. Initially this is set to the starting t.

Y(1:NEQ) [inout] This array contains the solution
components y at t. Set to the initial values for y
as input.

YPRIME(1:NEQ) [inout] This array contains the
derivatives y′ of the solution components at t. Set
initial values for y′, as input. It is not necessary
to begin with y′ such that g(t,y,y′) = 0. See
INFO(11), below.

TOUT [in] This is a point where a solution (t,y,y′)
is desired. A value of TOUT less than the initial
value of t causes the integration to go from larger to
smaller values. Otherwise the integration increases
from the initial t to the value TOUT. The integra-
tion is likely to proceed a small distance past TOUT
unless INFO(4) has been used, see below.

INFO(1:N) [in] . The basic task of the code is to solve
the system from the initial t to TOUT and return an
answer at TOUT. The parameters INFO(1:N) are
an integer array that communicates exactly how this
task is carried out. (See page 4 below for details.)
The size N of this array must be at least 16.

RTOL(:), ATOL(:) You must assign relative (RTOL)
and absolute (ATOL) error tolerances to tell the
code how accurately you want the solution to be com-
puted. They must be defined as variables because
the code may change them. You have two choices:
Both are arrays of size 1, (INFO(2)=0), or both
are arrays of size NEQ, (INFO(2)=1). In either
case all components must be non-negative. The tol-
erances are used by the code in a local error test at
each step which requires roughly that |local error| ≤
RTOL|y|+ATOL, for each vector component. (More
specifically, a root-mean-square norm is used to mea-
sure the size of vectors, and the error test uses the
magnitude of the solution at the beginning of the
step.) The true (global) error is the difference be-
tween the true solution of the initial value problem
and the computed approximation. This code only
controls the local error at each step. Frequently, the
true accuracy of the computed Y is comparable to
the error tolerances. This code will usually, but not
always, deliver a more accurate solution if you re-
duce the tolerances and integrate again. By com-
paring two such solutions you can get an idea of the
true error in the solution at the bigger tolerances.
Setting ATOL=0. results in a pure relative error
test on that component. Setting RTOL=0. results
in a pure absolute error test on that component. A
mixed test with non-zero RTOL and ATOL corre-
sponds roughly to a relative error test when the so-
lution component is much bigger than ATOL and to

an absolute error test when the solution component
is smaller than the threshold ATOL. The code will
not attempt to compute a solution at an unreason-
able accuracy. It will advise you if you ask for too
much accuracy and inform you as to the maximum
accuracy it believes possible.

IDID [out] This integer reports what the code did. You
must monitor this variable to decide what action to
take next, see page 6.

RWORK(:) Dimension this work array of size LRW
in your calling program.

LRW The declared size of the RWORK array. You
must have (MAXORD = 5 unless changed by
INFO(9)) LRW ≥ 45 + (MAXORD + 2 ∗
INFO(10) + 4) ∗NEQ+

|INFO(5)| = 1, 2, 7, 8, 11, 12: + NEQ2, dense
Jacobian case, or

|INFO(5)| = 3, 9, 13: + (2*ML+MU+1)*NEQ,
banded user-defined Jacobian case, or

|INFO(5)| = 4, 10, 14: + (2*ML+MU+1)*NEQ
+ 2*(NEQ/(ML+MU+1)+1), banded finite-
difference-generated Jacobian case, or

|INFO(5)| = 5 or 6: + 0, the Jacobian is stored in
the calling program or subroutine DDASF.

IWORK(:) Dimension this integer work array of size
LIW in your calling program.

LIW Set it to the declared size of the IWORK array:
LIW ≥ 30+NEQ.

B.2 The user supplied subroutine for comput-
ing problem data

This user defined subroutine defines the system of dif-
ferential/algebraic equations and related linear algebra
operations. It has the form

SUBROUTINE DDASF (T, Y, YPRIME,
DELTA, D, LDD, C, IRES, RWORK,
IWORK)

For the given values of T, Y and YPRIME,
the routine normally returns the residual of the
differential/algebraic system DELTA = g(t,y,y′).
The array DELTA(1:NEQ+INFO(10)) is a vector
which contains the output for DDASF. The array
D(1:LDD,1:NEQ) is normally used for providing par-
tial derivatives of the system and constraint equations
that arise from differentiation and reduction of the sys-
tem index to 1 or 0.

You must declare the name DDASF in an EX-
TERNAL statement in your program unit that calls
DDASLX. If you use reverse communication, INFO(5)
< 0, and |INFO(5)| < 6, just use the name DDASF.
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This provided routine is a “stub” which is not called
when using using reverse communication and will print
an error message if called. Declare Y(:), YPRIME(:)
and DELTA(:) as arrays in routine DDASF. Respond
to requests using the value of IRES. Use a SAVE
statement for the local variables that are required to
maintain their values between calls. These variables
can also be stored in open locations of RWORK,
IWORK). If you have declared LRW > lrw, where
lrw is the required lower bound for LRW, and similarly
for LIW, then locations RWORK(lrw+1:LRW) and
IWORK(liw+1:LIW) are available to pass data be-
tween your main program and DDASF.

IRES=0 Initialize subroutine parameters or any stor-
age requirements. If this does not apply, then ignore
this value and return without any further action. Do
not alter DELTA, D or C when IRES = 0, but y
values can be set.

IRES=1 Evaluate the residual of the differential/al-
gebraic system. Place values in the array
DELTA(1:NEQ) = F(t,y,y′).

IRES=2 This case occurs for |INFO(5)| = 2, 4, 5, 6,
8, and 10. Evaluate the partial derivatives, D(i, j)
= (∂Fi/∂yj) + c(∂Fi/∂y

′
j), The scalar c is an input

argument to DDASF. For the given values of T, Y,
YPRIME, the routine must evaluate the non-zero
partial derivatives for each equation, and store these
values in the matrix D. For dense or banded matrices,
stored in the work space RWORK(:), the elements
of D are set to zero before each call to DDASF so
only non-zero elements need to be defined. Do not
alter T, Y, YPRIME, or C. The way you must
store the elements into D depends on the structure
of the matrix, indicated by INFO(5):

INFO(5)=2, 8, and 12 Full (dense) matrix.
When you evaluate the (non-zero) partial
derivative of equation i with respect to vari-
able j, you must store it in D according to
D(i, j) = (∂Fi/∂yj) + c(∂Fi/∂y

′
j).

INFO(5)=4, 10, and 14 Banded Jacobian with
ML lower and MU upper diagonal bands (refer
to INFO(6) description of ML and MU). Give
D a first dimension of 2*ML+MU+1. When
you evaluate the (non-zero) partial derivative
of equation i with respect to variable j, you
must store it in D according to irow = i −
j+ ML+MU+1, D(irow, j) = (∂Fi/∂yj) +
c(∂Fi/∂y

′
j).

INFO(5) = 5 and 6 The array D is a dummy
argument and is not used. Save the par-
tials (∂Fi/∂yj) + c(∂Fi/∂y

′
j) in the subroutine

DDASF. This case requires that you factor the
matrix (if you ever do) at this time as the value
IRES=3 is not provided in this case. As for
that case you should set IRES = 0 to flag the
fact that there were no problems in obtaining
the factorization.

IRES=3 This case occurs for |INFO(5)| > 6. Factor
the matrix of partials. Prepare to solve systems in-
volving the matrix D = (∂Fi/∂yj)+c(∂Fi/∂y

′
j). The

solution method can be a convenient one of the user’s
choice. If the matrix is non-singular it is important
to return IRES=0 as a signal. Otherwise return
IRES=3, if the system is numerically singular.

IRES=4 Solve a linear algebraic system using the ma-
trix of partials D, i.e. solve Dw = r for w. The vec-
tor r is input in array DELTA(:). The solution w
overwrites DELTA(:). If for any reason the system
cannot be solved, return w = r as the approximate
solution. This may cause the integrator to take cor-
rective action such as reducing the step-size or the
order of the formulas used. This situation may occur
when iteratively solving a linear system, but requir-
ing an excessive number of iterations.

IRES=5 This occurs only if INFO(10) 6= 0. Com-
pute the residual and partials for projecting the so-
lution Y(:) onto the constraints G(t,y) = 0 after
a step has been computed and the corrector equa-
tion has converged. Compute the partial derivatives
∂G/∂y in D(NEQ+1:NEQ+INFO(10),1:NEQ)
and the residual of the constraints G(t,y) in
DELTA(NEQ+1:NEQ+INFO(10)).

If you are handling the linear algebra (|INFO(5)| ≥
5) then you should also compute the projec-
tion and residual vector norm and store it in
DELTA(1:NEQ+INFO(10)). The DDASLX
code applies the projection, Y(:)=Y(:) −
DELTA(:). (Note that the flag is given to DDASF
if INFO(5) ≥ 0, and else is provided using reverse
communication. If for example you are using for-
ward communication for derivatives and doing you
own linear algebra using reverse communication, you
will need to either deal with the linear algebra in
DDASF, or call a routine from there that will do
the job.)

The remaining cases IRES=6,7,8 occur when using
the routine DDASLS for computing starting values
of y′. Code does not have to be provided for these
values of IRES if DDASLS is not being used. For
systems of index 0 the evaluation cases [IRES=6,8]
will not occur, i.e. only code for [IRES=7] must be
provided.

IRES=6 Evaluate the partial with respect to t of the
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differential/algebraic system. Place values in the ar-
ray DELTA(1:NEQ) = Ft(t0,y0,y

′). This case
occurs if the system has index 1 or higher.

IRES=7 This case occurs with either [INFO(5) =
2, 4]. Evaluate the partial derivatives, D(i,j) =
∂Fi/∂y′j. For the values of T, Y, YPRIME, the
routine must evaluate the non-zero partial derivatives
for each equation, and store these values in the array
D(1:NEQ,1:NEQ. It is not necessary to store zero
values. The way you must store the elements into
D(:,:) depends on the structure of the matrix, indi-
cated by INFO(5). This structure is either a dense
or banded representation.

IRES=8 This case occurs with either [INFO(5) =
2, 4]. Evaluate the partial derivatives, D(i,j) =
∂Fi/∂yj. For the values of T, Y, YPRIME, the
routine must evaluate the non-zero partial derivatives
for each equation, and store these values in the ar-
ray D(1:NEQ,1:NEQ. The way you store the ele-
ments in D(:,:) depends on whether this is a dense
or banded representation.

Ordinarily subroutine DDASF should not change the
value of IRES. The following values can be set for spe-
cial cases. Do not return these values when using the
routine DDASLS.

0 This must be set if you are factoring the iteration
matrix, to let DDASLX know that your matrix is
not singular.

−1 Some kind of difficulty has been encountered. This
causes DDASLX to reduce the stepsize or order
which may cure the problem.

−2 Return immediately to the main program, for one
reason or the other it is time to quit.

<−2 This has the same effect as setting INFO(6) to
the negative of this number. It provides a way of
turning on debug print at any time.

B.3 Setting options using the array INFO

Use the INFO(:) array to give the code more details
about how you want your problem solved. This array
should be dimensioned of size 16. You must set all of
the following items. The simplest use of the code corre-
sponds to setting all values of INFO to 0, which gives
the default actions.

INFO(1) Must be set by the user at the beginning of a
new problem. Set by DDASLX to nonzero values as
the integration proceeds. Set INFO(1) = 0 at the
first call for this problem. For continuation or reverse
communication calls this will have a value INFO(1)
= 1.

INFO(2) How much accuracy you want of your solu-
tion is specified by the error tolerances RTOL and
ATOL. If INFO(2) = 0, RTOL and ATOL are
scalars and these values are used for error control
on all equations. If INFO(2) = 1, RTOL(:) and
ATOL(:) are arrays of size NEQ. The ith entries
are used on the ith equation.

INFO(3) The code integrates from T in the direction
of TOUT by signed steps. If you wish, it will return
the computed solution and derivative at the next in-
termediate step (the intermediate-output mode) or
TOUT, whichever comes first. This is a good way
to proceed if you want to see the behavior of the so-
lution. If you must have solutions at a great many
nonspecific TOUT points, this code will compute
them efficiently.
Set INFO(3) = 0 to return the solution only at
TOUT (and not at the next intermediate step).
Set INFO(3) = 1 to return the solution at the next
intermediate step.

INFO(4) To efficiently handle solutions at many values
TOUT, this code may integrate past TOUT and
interpolate to obtain the result at TOUT. Some-
times it is not possible to integrate beyond some
point TSTOP because the equation changes there
or it is not defined past that point. Then you must
tell the code not to go past this point.
Set INFO(4)=0 so the integration can proceed
without any restrictions on the independent variable
T.
Set INFO(4)=1 and define the stopping point
TSTOP by setting RWORK(2)=TSTOP.

INFO(5) To solve differential/algebraic problems it is
necessary to use a matrix of partial derivatives for
the system of differential equations. This flag must
be set to give information about your matrix. The
first column in the following table gives the value to
use for the cases as checked in later columns. The
later columns are defined by:

A Full dense matrix.

B Banded matrix.

C Matrix with structure unknown to DDASLX.

D Partials computed using differences.

E Partial computed by the user’s code.

F User does linear algebra in DDASF.

G User does linear algebra using reverse communi-
cation.
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A B C D E F G
1 x x
2 x x
3 x x
4 x x
5 x x
6 x x
7 x x x
8 x x x
9 x x x

10 x x x
11 x x x
12 x x x
13 x x x
14 x x x

If INFO(5) < 0 all is as above, except instead of
calling DDASF to compute g and all partials, re-
verse communication is used. The value 0 is treated
the same as 1.

Although it is less trouble for you to have the code
compute derivatives by numerical differencing, the
solution will be more reliable and efficient if you pro-
vide the derivatives using formulas.

When B is checked, D = (∂F/∂y) + c(∂F/∂y′),
is banded. Here c is a factor determined by
DDASLX. The differential equation is said to have
half-bandwidths ML (lower) and MU (upper) if D
involves only some of the unknowns yj with i−ML)
≤ j≤ (i+MU) for all i = 1, ...,NEQ. Thus, ML and
MU are the widths of the lower and upper parts of
the band, with the main diagonal being excluded. If
the matrix is stored in the RWORK(:) array and
you do not indicate that the equation has a banded
matrix of partial derivatives, the code works with
a full array of NEQ2 elements, stored in the con-
ventional Fortran array style. Computations with
banded matrices typically require less time and stor-
age than with full matrices, if 2*ML+MU < NEQ.
If you tell the code that the matrix of partial deriva-
tives has a banded structure and you want to provide
subroutine DDASF to compute the partial deriva-
tives, then you must store the elements of the matrix
in the Linpack band-matrix specification, indicated
in the description of DDASF.
Provide the lower ML and upper MU bandwidths by
setting IWORK(1)=ML and IWORK(2)=MU.

INFO(6) Set the level of debugging print. A value of 0
gives no print. Debug print can also be specified by
setting negative value for IRES after starting. This
is a 7 digit number d6d5d4d3d2d1d0 defining what to
print as follows.

d0 Print on entry to DDASLX

0. No print

1. IDID, INFO(1), NEQ, T, TOUT

2. The above + y, y′

3. The above + Tolerances

4. The above + INFO(1:12)

d1 Print on exit from DDASLX. Print is as for d0.

d2 Before a call to DDASF (or return for re-
verse communication that would ordinarily call
DDASF).

0. No print.

1. Print T, IDID (which is IRES in this case)

2. The above + anything vectors used in the
computations, except for y, and y′.

3. Print y, and y′.

4. Print matrix if used in computation.

d3 As for the case above, except print is for what is
in the locations recently changed.

d4 Internal print inside subroutine DDASTP.

0. No print

1. y, y′ and corrections.

2. The above + error weights

3. The above + difference tables

4. The above + integration coefficients

d5 Determines how much of WORK and IWORK are
printed, when there is other print.

0. No print

1. Always print IWORK(1:22)

2. Always print WORK(1:10)

3. Always print both of the above.

d6 For turning off, or limiting the amount of print.

0. No effect

1. No effect, but gives a way to specify a value
of 0, 1 or 2 when passing a negative value
of IRES after starting.

> 1. Print data for just this many of the first
variables, and just this many of the first
rows in matrices when variables or matri-
ces are printed.

INFO(7) You can specify a maximum stepsize, so that
the code will avoid passing over very large regions.
Set INFO(7)=0 for the code to decide on its own
maximum stepsize.
Set INFO(7)=1 and define the maximum stepsize
HMAX by setting RWORK(3)=HMAX.

INFO(8) Differential/algebraic problems may occa-
sionally suffer from severe scaling difficulties on the
first step. If you know the scaling of your problem,
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you can help avoid this problem by specifying an ini-
tial stepsize H0.
Set INFO(8)=0 for the code to define its own initial
stepsize.
Set INFO(8)=1 and define the initial stepsize H0
by setting RWORK(4)=H0.

INFO(9) If lack of storage is an issue, or if the problem
itself should use lower order formulas, one can restrict
the maximum order of the backward differentiation
formulas, MAXORD. The default value is 5. For
each order decrease below 5, the code requires NEQ
fewer locations. However lowering MAXORD may
slow the code. In any case, you must have 1≤MAX-
ORD ≤ 5.
Set INFO(9)=0 for the maximum order to default
to 5.
Set INFO(9)=k to set the maximum order to k ≤ 5.

INFO(10) Set this to the number of constraints you
wish to impose on the solution. This option
should be used when the problem has an index
> 1 and constraints are differentiated to reduce
the index. The code will perform better if the
index is reduced to 0. This option must not
be used when [INFO(5) = 3,4]. The calcula-
tion of the residuals on the constraints for G are
stored in positions [NEQ+1:NEQ+INFO(10)] of
DELTA(:). The partials ∂G/∂y are stored in rows
[NEQ+1:NEQ+INFO(10)] of D.

INFO(11) DDASLX normally requires the initial T,
Y, and YPRIME to be consistent. That is, you
must have F(t,y,y′) = 0 at the initial time. If you
do not know the initial derivative or y′, you can let
DDASLX compute it.
Set INFO(11) = 0 if the initial T, Y, YPRIME
are consistent. If the initial y′ values are not
known we suggest using the provided starting rou-
tine DDASLS 8.
Set INFO(11) = 1, and set YPRIME to an initial
approximation. If you have no idea what YPRIME
should be, set it to zero. Note that the initial y
should be such that there must exist a y′ so that
F(t,y,y′) = 0.

INFO(12) DDASLX normally allows up to 500 inter-
nal steps between output points.
Set INFO(12)=0 for the code to use up to 500 in-
ternal steps between output points.
Set INFO(12)=k and the code will use up to k in-
ternal steps between output points.

INFO(13) DDASLX normally uses the smoothed step
control algorithm described in [4].
Set INFO(13)=0 for the code to the step control
method of Söderlind. We consider this superior to
the logic used by the original Petzold code DASSL.

Set INFO(13)=1 and the code will use the original
step control logic.

INFO(14:16) Not used currently by the code, but must
be set to 0.

B.4 Using Reverse Communication

When reverse communication is used certain arguments
ordinarily passed to DDASF, are stored in IWORK
and RWORK as follows.

IRES is in IWORK(3).

DELTA() starts in RWORK(IWORK(4)).

D() start in RWORK(IWORK(5)).

C is in RWORK(1)

A return to the user’s code with IDID=4 is a signal
that what is computed in DDASF when using forward
communication should be computed at this time using
the above replacements for the arguments to DDASF.

B.5 Modifications for single precision

Change names starting with DDASLX and DDASF
to start with SDASLX and SDASF. Change all DOU-
BLE PRECISION type statements to REAL.

B.6 Optional Norm Routine

The DDASLX package provides a weighted norm
DDASNM to measure the size of vectors such as the
estimated error in each step. A subprogram may be
exchanged for this routine: DOUBLE PRECISION
FUNCTION DDASNM (NEQ, V, WT,
RWORK, IWORK) Arrays
V(1:NEQ),WT(1:NEQ) are used with this norm.
Here, V(:) is the vector whose norm is to be
computed, and WT(:) is a vector of weights. The
routine DDASNM is included with DDASLX, and
computes the weighted root-mean-square norm given
by the formula DDASNM =
SQRT((1./NEQ)*SUM(V(:)/WT(:))**2). This
norm is suitable for most problems. In special cases, it
may be more convenient or efficient to define your own
norm by writing a replacement function subprogram.

B.7 Values of IDID on Return from DDASLX

IDID Task Completed or Ongoing
1 A step was successfully taken in the

intermediate-output mode. The code has
not yet reached TOUT.

2 The integration to TSTOP was successfully
completed (T=TSTOP) by stepping exactly
to TSTOP.

3 The integration to TOUT was successfully
completed (T=TOUT) by stepping past
TOUT. Y(:) is obtained by interpolation.
YPRIME(:) is obtained by interpolation.
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IDID Task Completed or Ongoing
4 The integration has paused for reverse com-

munication. Respond based on the values of
IWORK(3).

IDID Task Interrupted
−1 IRES set to −2 by the user.
−2 Accuracy requested exceeds machine precision.

RTOL and ATOL have been increased.
−3 There have been too many steps between out-

put points.
Quit or Restart Integration

−4 No convergence due to IRES being set to −1.
−5 A weight for computing error norms is ≤ 0.
−6 The error test has failed repeatedly.

IDID Invalid input
−7 Repeated failure of the corrector to converge.
−8 The iteration matrix is singular.
−9 Repeated corrector convergence failures, with

singular matrices flagged.
−10 Could not solve for the initial y′.
−11 An INFO entry has a value not allowed for

that option.
−12 The number of equations was set ≤ 0.
−13 The maximum order does not have a value

from 1 to 5.
−14 The size of RWORK is too small.
−15 The size of IWORK is too small.
−16 An entry of RTOL is < 0.
−17 An entry of ATOL is < 0.
−18 All entries of RTOL and ATOL are 0.
−19 The value of TOUT is > TSTOP.
−20 The maximum stepsize is set ≤ 0.
−21 The current TOUT is behind T.
−22 The initial stepsize has been set to 0.
−23 TOUT is too close to the starting T.
−24 TSTOP is not consistent with the current T.
−25 An illegal bandwidth.
−26 The current T and TOUT are equal.
−27 Constraints used with band matrices.
−28 When solving constraints for a user defined ma-

trix, IRES was not set to 0.
−29 Constraints being projected onto appear incon-

sistent at the initial point.
−30 Constraints being projected onto appear incon-

sistent during the integration.
−31 No appropriate action was taken when code re-

turned with IDID < 0.

B.8 Values of RWORK and IWORK on exit

RWORK(:), IWORK(:) Contain information which
is often of no interest to the user but is necessary
for subsequent calls. However, you may find use for
the following.

RWORK(4) The step size H to be attempted on the

next step;

RWORK(5) The current value of the independent
variable, i.e., the farthest point integration has
reached. This will be different from T only when
interpolation has been performed (IDID=3).

RWORK(7) The stepsize used on the last successful
step.

IWORK(7) The order of the method to be attempted
on the next step.

IWORK(8) The order of the method used on the last
step.

IWORK(13) The number of steps taken so far.

IWORK(14) The number of evaluations of the
residual function so far.

IWORK(15) The number of evaluations of the
matrix of partial derivatives needed so far.

IWORK(16) The total number of error test failures
so far.

IWORK(17) The total number of convergence test
failures so far. This includes singular iteration
matrix or related failures.

B.9 Getting Debug Print After Starting

When debugging print is desired, it is frequently
inconvenient to have lots of such output prior to the
place where problems are known to occur. If you want
to start debug print at a place where INFO is
available, you can simply set INFO(6) to the value
you would ordinarily set it too when starting. But in
DDASF, INFO is not available. In this case you can
set the return value of IRES to the negative of the
value you would ordinarily set INFO(6) to. If this
negative value is not < −2, you will need to set d6 to
get the desired result.

In addition is also possible for you to make a direct call
to get debug print. This call has the form

CALL DDASDB (KASE, NEQ, T, Y,
YPRIME, INFO, RWORK, IWORK,
IRES, ATOL, RTOL)

KASE is used to specify the type of print desired. It
must be a negative two digit number −d1d0, where d1 is
the value for one of the digits given in the description of
INFO(6), and d0 gives the digit that this is supposed
to correspond to. If you have not made a nonsense
choice, this print will be as if INFO(6) had dd0

= d1.

If you are not getting this print in DDASF or in
reverse communication that would ordinarily call
DDASF, then the IRES in the calling sequence should
be replaced by IDID. Also you can replace INFO with
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IWORK when INFO is not available, and similarly
can replace ATOL and RTOL with RWORK.

B.10 Computing Starting Values for
Derivatives

When the integration starts it is often true that initial
values for y(t0) = y0 are known. It may be necessary
to solve for initial derivative values y′(t0) = y′0 that
achieve consistent conditions F(t0,y0,y

′
0) = 0. The

routine DDASLS is provided for this. The integrator
DDASLX provides an alternative method that is used
when INFO(11)=1 6.
The assumptions for our starting algorithm are:

• The system has index 0 or index 1

• Initial values t0,y0 are known but maybe not all
values y′0

• All estimated values of y′0 are meaningful to the
problem

• The partials ∂F/∂t = Ft, Fy, and Fy′ are
computable and continuous at t0,y0,y

′
0. The rank

of Fy′ must be positive.

• Any values for y′ are allowed to change to achieve
F(t0,y0,y

′
0) = 0

• Any consistent set of values obtained that satisfy
F(t0,y0,y

′
0) = 0 satisfy the constraints

G(t0,y0) = 0.

The routine DDASLS is organized so that a user can
add additional cases in the evaluation routine DDASF
written for DDASLX that separately compute Ft, Fy

and Fy′ . The evaluation of F(t0,y0,y
′
0) uses the same

flag value [IRES=1] as DDASLX. Reverse
communication is also supported.

B.11 Program Prototype for Starting Routine
DDASLS, Double Precision

B.11.a The Calling Routine

EXTERNAL DDASF

DOUBLE PRECISION T, Y(≥NEQ),
YPRIME(≥ NEQ), FTOL, RNKTOL,
RWORK(=LRW)

INTEGER NEQ, INFO(N ≥16), IDID, LRW,
IWORK(=LIW),LIW

The user must assign values to T, Y(1:NEQ), and
YPRIME(1:NEQ). Set flags in array INFO(:) and
assign values of FTOL and RNKTOL.

CALL DDASLS(DDASF, NEQ, T, Y, &
YPRIME, INFO, FTOL, RNKTOL, &
C, LDC, LTD, IDID, &
RWORK, LRW, IWORK, LIW)

Computed quantities are returned in YPRIME(:).

B.11.b Argument Definitions

DDASF [external] The name of the routine providing
system information, described above, 2 Use this
dummy name when reverse communication provides
system information. When using reverse
communication, a single initialization call to
DDASF is made with IRES=0. One can use this
to do any special setup that may be desired, or to
set the initial y values.

NEQ [in] The number of equations to be solved.

T [in] The value of the independent variable t. This is
set to the starting t = t0.

Y(1:NEQ) [in] Set to the initial values for y = y0 as
input.

YPRIME(1:NEQ) [inout] This array contains the
derivatives y′ of the solution components at t0. Set
some approximate initial values for y′, as input. It
is not necessary to begin with y′ such that
F(t,y,y′) = 0.

INFO(1:N) [in] . The only task of the code is to solve
for initial values of y′ that satisfy F(t0,y0,y

′
0) = 0.

The parameter INFO(1:N) is an integer array that
communicates how this task is carried out. (See
page 4 above for details.) The size N of this array
must be at least 16. Values of INFO(:) used have
the same meanings as will occur when integrating
the system using DDASLX. Only the entries
INFO(I), I=1,5,14 are used in the code.
INFO(1) must be 0 when starting, and is 1 when
doing reverse communication. It is set to 0 on all
exits.

If the Jacobians are dense matrices set
|INFO(5)|=2. When the Jacobians are banded
matrices, set |INFO(5)|=4. To use reverse
communication have INFO(5)< 0.

For banded Jacobians and index 1, a regularization
parameter is required. For this use INFO(14) = 0
to have the default parameter with value
macheps(2./3.). To use other values set INFO(14)
> 0 and place the regularization parameter in
location RWORK(INFO(14)).

FTOL, RNKTOL [in] You must assign absolute
(FTOL) and relative (RNKTOL) tolerances to
tell the code how accurately you want the initial
conditions to be computed and how to determine
rank deficiencies. The code computes y′0 such that
||F (t0, y0, y

′
0)||1 ≤ FTOL. A diagonal term, j, of an

intermediate upper triangular matrix, with column
vector aj , is classified as near zero if
|aj,j | ≤ RNKTOL× ||aj ||1.
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Suggestion: RNKTOL = macheps(2./3.).

C(1:LDC, 1:LTD) [inout] This is the working array
where the partial derivative matrices Fy′ and Fy

will be returned after evaluation by DDASF or
reverse communication.

LDC [in] This is the leading dimension of the array
C(:, :). For dense Jacobian matrices it has a value
LDC ≥ NEQ when Fy′ has full rank. This occurs
with an index 0 problem. When Fy′ is rank
deficient, LDC ≥ 2 ∗NEQ.

When Fy′ is rank deficient and the Jacobian
matrices are banded,
LDC ≥ 4 ∗ML + 2 ∗MU + 4. This occurs when
the problem has index 1.

LTD [in] This is the second dimension of the array
C(:, :). For dense Jacobian matrices it has a value
LTD ≥ NEQ. This occurs with an index 0 or index
1 problems.

When Fy′ is rank deficient, and the Jacobian
matrices are banded, LTD ≥ 2 ∗NEQ is required.
This occurs when the problem has index 1.

IDID [out] This integer reports what the code did or if
evaluations are requested using reverse
communication.

IDID=0 The system has index 0 or 1 and values
for y′0 were computed.

IDID=-1 An error or exceptional condition was
noted. Details and reasons are flagged by various
values in IWORK(1).9

IDID ≥ 1 Compute requested value using reverse
communication. Use the values IRES =
IWORK(3) and IR = IWORK(4):

IRES=1 Evaluate and place F (t0, y0, y
′
0) in

RWORK(IR+1:IR+NEQ).

IRES=6 Evaluate and place Ft in
RWORK(IR+1:IR+NEQ).

IRES=7 Evaluate and place Fy′ in C(:,1:NEQ)
based on the storage mode used for dense or
banded Jacobians.

IRES=8 Evaluate and place Fy in C(:,1:NEQ)
based on the storage mode used for dense or
banded Jacobians.

Re-enter the routine DDASLS and continue
computation.

RWORK(:) [inout] Dimension this work array of size
LRW in your calling program.

LRW [in] The declared size of the RWORK array.
LRW≥2*NEQ+2 for dense Jacobians or
LRW≥7*NEQ+2 for banded Jacobians.

IWORK(:) [out] Dimension this integer work array of
size LIW in your calling program.

LIW [in] The declared size of the RWORK array:
LIW ≥ 2*NEQ+8.

B.12 Flag IDID=0,−1: IWORK(1)

0 The system has index 0 and consistent initial
values for y′ were computed.

1 The system has index 1 and consistent initial
values for y′ were computed.

2 The system has index 0 but the system
F (t, y, y′) is not consistent using the tolerance
FTOL. It should be consistent so FTOL may
be too small for this problem. Iterations are
done while the l1 norm of F is < 1/4 the l1
norm of F from the previous iteration.

3 The system has index 1 but the system
F (t, y, y′) is not consistent using the tolerance
FTOL.

4 The system appears to have an index > 1. The
use of DDASLX does not apply to this
system.

5 The system has rank Fy′ = 0. This is not a
DAE.

6 The value NEQ ≤ 0, i.e. no system.

7 The value LDC is too small. Must be ≥ NEQ
for index 0 problems and dense Jacobians.

Must be ≥ (2 ∗ML + MU + 1), for banded
Jacobians, index 0.

Here ML, MU are the lower and upper band
widths. Provide the lower ML and upper MU
bandwidths by setting IWORK(1)=ML and
IWORK(2)=MU.

8 The value LDC is too small. Must be
≥ 2 ∗NEQ for index 1 problems and dense
Jacobians.

Must be ≥ 4 ∗ML + 2 ∗MU + 4 if problem is
banded with index 1.

9 The value LRW is too small. Must be
≥ 2 ∗NEQ + 2 for dense systems and
≥ 7 ∗NEQ + 2 for banded systems.

10 The value LIW is too small. Must be
≥ 2 ∗NEQ + 8.

11 Must have |INFO(5)| = 2,4. Routine
supports dense or banded matrices only. The
user computes derivatives in forward
INFO(5) > 0 or reverse communication
INFO(5) < 0.

12 Must have FTOL > 0. Now ≤ 0.

13 Must have RNKTOL ≥ 0. Now < 0.
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14 Must have the number of sub- and super-
bandwidth parameters ML,MU ≥ 0. Now
one of them is < 0.

15 Must have second dimension LTD of C(:,:)
≥ NEQ for dense or banded systems. Value is
now < NEQ.

For banded systems of index 1
LTD ≥ 2 ∗NEQ. This is checked when the
index is > 0, or Fy′ is singular.

There are calls made to DDASLS in Examples
1,2,3 and 5 that solve for initial values of y′.

C. Examples and Remarks

C.1 An Index 2 DAE Solved Using Constraints

Gear and Petzold, see [5], discuss the index 2 DAE
system

y′1 + ηty′2 + (1 + η)y2 − sin(t) = 0

y1 + ηty2 − cos(t) = 0

with y1(0) = 1; y2(0) = 0; η = 10; 0 ≤ t ≤ 10.

Since DDASLX solves “index 0” or “index 1”
problems, the problem must be transformed to one of
“index 1”. Differentiating the last equation results in
an “index 1” system, so the integrator applies. The
given equation must remain satisfied, so it is added as a
constraint. Without this step the solution may
seriously drift away from the given equation. Thus the
example uses a program option, and provides derivative
and residual information for the index 1 system and the
constraint.

Differentiating the last equation twice results in an
“index 0” system. The equations for the “index 2” and
“index 1” systems are added as constraints and the
integration is done once again. The results agree within
the tolerances requested, as expected. This “index 1”
problem, with the requested accuracy, takes more
residual evaluations than the “index 0” problem.
However, obtaining the “index 0” problem requires two
derivative computations (analytic), whereas the “index
1” problem requires one derivative.

This example illustrates a mathematical change of the
problem so that DDASLX applies. Then constraints
are added to the stated problem, in two ways. The two
initial derivative values y′1, y

′
2; are computed using the

routine DDASLS. Otherwise the integrator uses
default values and linear solver code. The file used,
drddasl1.f and the result of running this problem are
given at the end of this chapter.

C.2 A Stiff ODE Test Problem

Problem E5 of Enright and Pryce, see [6], is an explicit
stiff ODE, which we express as

g =


−b1y1 − b2y1y3 − y′1
b1y1 − b3y2y3 − y′2

b1y1 − b2y1y3 + b4y4 − b3y2y3 − y′3
b2y1y3 − b4y4 − y′4



y(0) =


b0 = 1.76× 10−3

0
0
0



b =


b1 = 7.89× 10−10

b2 = 1.1× 107

b3 = 1.13× 109

b4 = 1.13× 103


The derivative matrix required by DDASLX is

∂g

∂y
+ cj

∂g

∂y′
=
∂g

∂y
− cjI4 =−b1 − b2y3 − cj 0 −b2y1 0

b1 −b3y3 − cj −b3y2 0
b1 − b2y3 −b3y3 −b2y1 − b3y2 − cj b4

b2y3 0 b2y1 −b4 − cj


We integrate between each value of a list of output
points tj , j = 1, ..., k. In Example 4 below we will show
how to efficiently integrate variational equations with
respect to the parameters bi, i = 0, 1, 2, 3, 4. The
subroutine DDASSF2 defines the required system
information of this problem. The main program
DRDDASL2 integrates the system over the sequence
of intervals [ti−1, ti] , i = 1, ..., k. The partial derivative
formulas are used (INFO(5)=1) in the first
integration, while finite differences (INFO(5)=0) are
used instead of the formulas for the second integration.
This usage of DDASLX illustrates a simple form for
integrating a system of DAEs. Due to the fact that the
upper triangle for the derivative matrix has three
non-zeros, a special method is used for this problem.
Three plane rotations are constructed from the right to
obtain a lower triangular matrix. The solving step uses
this decomposition. Both of these steps are added to
the subroutine DDASSF2, indicated by the option
INFO(16)=2. [The code and output listing are
available in the download.]

C.3 A DAE Problem, the Swinging Pendulum

This material is found in [1, p. 154]. A ball of mass m,
swinging on a thin bar, with dynamic tension y5, of
length l under the influence of gravity g, is expressed as
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the first order system

y′1 = y3

y′2 = y4

my′3 = −y1y5
my′4 = −y2y5 −mg

y21 + y22 = l2.

This system cannot be solved by DDASLX, since it is
an “index 3” problem. By differentiating the last
equation twice and substituting from the other
equations, one obtains two additional algebraic
equations y1y3 + y2y4 = 0 and
m(y23 + y24)−mgy2 − l2y5 = 0. Use of only the final
equation, in place of the given constraint, results in an
“index 1” problem. Thus DDASLX can be used to
integrate the system. As noted in Petzold, page
155–156, there is a tendency for the integrated system
to drift from the two alternate constraints. These
residuals become large particularly after long
integration times. In Section C.5 below we show how to
stay on these constraints. The system is expressed by

g =


y3 − y′1
y4 − y′2

−y1y5 −my′3
−y2y5 −my′4 −mg

m(y23 + y24)−mgy2 − l2y5

 .

The partial derivatives are

∂g

∂y
+ cj

∂g

∂y′
=


−cj 0 1 0 0

0 −cj 0 1 0
−y5 0 −mcj 0 −y1

0 −y5 0 −mcj −y2
0 −mg 2my3 2my4 −l2

 .

Our main program DRDDASL3 integrates this
system over the interval 0 ≤ t ≤ 10. The subroutine
DDASSF3 illustrates additional features that our
software permits. For the values IRES=1 and
IRES=2, function and partial derivative information
is provided. For IRES=3 and IRES=4 we factor and
then solve a system of five algebraic equations. In this
example the matrix is reduced to upper triangular form
using five plane rotations. The rotation data that
eliminates the entry at row 3, column 1 also eliminates
the entry at row 4, column 2. Thus the first rotation
does double duty. The triangularization requires three
more plane rotations, applied between the main
diagonal and row 5, columns 2, 3, and 4. To avoids
divides in the solving step, signaled by IRES=4, we
reciprocate the diagonals of the upper triangular
matrix during the decomposition. It it not required

that a solution of the linear system be provided in the
routine DDASS3. We override the default solver to
give an example of this feature applied to this special
problem. [The code and output listing are available in
the download.]

C.4 Variational Equations with an ODE Test
Problem

The test problem E5, see Section C.2 on page 10,
involves the vector of parameters
p = [b0, b1, b2, b3, b4]T . In applications where this
vector itself must be varied, one often needs to compute
the variational equations ∂y/∂pi, i = 0, 1, 2, 3, 4.
Total differentiation of the DAE system g(t,y,y′) = 0
with respect to p results in the variational DAE system

dg

dp
≡ ∂g

∂y

∂y

∂p
+
∂g

∂y′
∂y′

∂p
+
∂g

∂p
= 0.

In this ODE example note that

∂g

∂y
=


−b1 − b2y3 0 −b2y1 0

b1 −b3y3 −b3y2 0
b1 − b2y3 −b3y3 −b2y1 − b3y2 b4
b2y3 0 b2y1 −b4


∂g

∂y′
= −I4, and

∂g

∂p
=


0 −y1 −y1y3 0 0
0 y1 0 −y2y3 0
0 y1 −y1y3 −y2y3 y4
0 0 y1y3 0 −y4


Thus the variational part of the DAE system is

∂g

∂y

∂y

∂p
− ∂y′

∂p
+
∂g

∂p
= 0.

The initial conditions are

∂y

∂p
ct=0 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
The twenty-four unknowns for DDASLX are the four
state equations for y and y′, followed by the twenty
variational equations involving ∂y/∂p and ∂y′/∂p.
However, this combined system has a simple derivative
matrix structure: There are six diagonal blocks each
with the same 4× 4 matrix, namely (∂g/∂y)− cjI4.
The right-hand sides are different for each block. This
observation obviates the need to deal with a 24× 24
matrix. Instead we store and factor the 4× 4 matrix.
With each request to solve a system, we have reduced
the problem to the same 4× 4 matrix and six different
right-hand sides. Thus the functionality we have
provided within DDASLX for storing derivatives and
solving systems has saved storage and work when

July 11, 2015 Solve a Differential/Algebraic System 14.3–11



dealing with variational equations. This is implemented
within the main program using reverse communication.
The main program DRDDASL4 integrates the system
and variational equations over the sequence of intervals
[ti−1, ti] , i = 1, ..., k. Partial derivative formulas are
used (INFO(5)=1) in the integration. [The code and
output listing are available in the download.]

C.5 Swinging Pendulum Problem and Higher
Index Constraints

Here we deal with the drift issue mentioned in
Section C.3. To this end we consider the “index 1” and
“index 0” problem with the additional constraints,
including the constraint of total energy,

g =



y3 − y′1
y4 − y′2

−y1y5 −my′3
−y2y5 −my′4 −mg

m(y23 + y24)−mgy2 − l2y5
y1y3 + y2y4
y21 + y22 − l2

(1/2)(y23 + y24) + gy2


= 0.

The first five rows of this g = F are provided as part of
the DAE. The last three rows or G = 0 are satisfied
using the option to project onto constraints. The 8× 5
derivative matrix is

∂g

∂y
+ cj

∂g

∂y′
=



−cj 0 1 0 0
0 −cj 0 1 0
−y5 0 −mcj 0 −y1

0 −y5 0 −mcj −y2
0 −mg 2my3 2my4 −l2
y3 y4 y1 y2 0
2y1 2y2 0 0 0
0 g y3 y2 0


.

The main program DRDDASL5 and subroutines,
DDASSFA for “index 1” and DDASSFB for “index
0”, combine to use forward communication to evaluate
g and required partial derivatives. See Section C.8 for
the equivalent simulation but with numerical
differentiation used in place of analytic partial
derivatives.

[The code and output listing are available in the
download.]

C.6 A Nonlinear Elliptic PDE Using an
Iterative Linear Solver

This example shows how DDASLX can be applied to
a system of ODEs, but with a large number of
unknowns. The linear solve step required by the
integrator is implemented with a “GMRES” iterative
solver, [7]. The code for the solver is located in the file

drddasl6.f that evaluates the residual function and
the partial derivatives.

This example primarily illustrates setting program
options that allow replacement of the default linear
solver and eliminating the dense partial derivative
matrix storage requirements. The problem, see [8], is a
nonlinear, elliptic equation on the unit square,

F (u) = ∇2u+ λeu = 0.

We use the boundary condition is u = 0 on the edge of
the square, and λ = 6 for the parameter. For
illustration, we solve for an approximate solution
F (u) = 0 by “continuation.”

That is, we introduce the artificial continuation
variable t and integrate the equation F (u) = ∂u/∂t,
with the initial values u = 0. We continue integrating
in t > 0 as ∂u/∂t→ 0. When we fix a sufficiently large
t > 0, F (u) = 0, approximately.

Our conversion to a discrete problem uses a nine-point
formula. This formula is based on a novel blending of
the difference approximations (1/3)∆hU plus the
rotated formula (2/3)∆×h U . This development is found
on pages 192–194, [9]. The blending parameters are
reversed from those found on page 194. This strong
second order difference scheme relies on a uniform grid,
in both space dimensions. This yields the following
system of ODEs, using the well-known Method of Lines:

Define

ui,j = u(xi, yj), xi = ih, i = 0, 1, . . . , n+ 1;

yj = jh, j = 0, 1, . . . , n+ 1; h = 1/(n+ 1)

The ODE system becomes

gi,j = −8ui,j + ui−1,j−1 + ui−1,j + ui−1,j+1

+ ui,j−1 + ui,j+1 + ui+1,j−1 + ui+1,j + ui+1,j+1

+ 3h2λeui,j − 3h2
∂ui,j
∂t

= 0.

This system has n2 components, and the initial values
are set to ui,j = 0 for all i, j. The edge values for ui,j
remain fixed at the value zero, while the interior values
assume non-zero values as the integration proceeds.

[The code and output listing are available in the
download.]

C.7 A Banded Linear System

This example illustrates using DDASLX in the case of
banded matrices D = (∂g/∂y) + c(∂g/∂y′).

Define the linear system as g = Ay − y′. The n× n
matrix A is constant, and lower triangular. It is also
banded. The respective lower and upper bandwidths
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are ml = 5 and mu = 0. These are defined in the same
way as found in Linpack, [3].

The matrix size is n = 25 and the initial value is
y(0) = y0 = e1, the first column of the n× n identity
matrix, In.

All diagonal values of A are real and negative, so the
analytic solution y(t) = eAty0 is bounded for t > 0.
Note that D = A− cIn has the same bandwidth
dimensions as A.

This problem is integrated over a sequence of intervals
[ti−1, ti], i = 1, . . . , k, (k = 6). Starting with t0 = 0 and
t1 = 0.01, each ti = 10ti−1, i = 2, . . . , k. All intervals
are essentially an order of magnitude longer than the
previous one. An absolute error tolerance is used.

The main program DRDDASL7 first integrates this
system with forward communication to define the
residual function g and the banded partial matrix D.
The Linpack banded solver that comes with DDASLX
is used for the linear algebra in this first case.

A second integration uses reverse communication to
define everything. This includes evaluating the residual
function, the partial matrix, and solving linear systems
with this partial matrix.

[The code and output listing are available in the
download.]

C.8 Swinging Pendulum Problem and Higher
Index Constraints - Numerical
Differentiation

This example is identical to Section C.5 except for the
use of numerical instead of analytic derivatives. The
numerical differentiation routine DJACG, Chapter 8.4,
is used. This example may serve as a guide for a DAE
integration when analytic derivatives of g, including
constraint equations, must be computed numerically.

[The code and output listing are available in the
download if the option for numerical differentiation is
included. The documentation for the numerical
differentiation can be found at
http://mathalacarte.com/cb/mom.fcg/ya89.]

D. Functional Description

Subroutine DDASLX uses the backward
differentiation formulas of orders one through five, as
described in [1, pp. 115–129] or [10], to solve a system
of the above form for y and y′. Values for y and y′ at
the initial time must be given as input in arrays
Y(1:NEQ) and YPRIME(1:NEQ). These values
must be consistent. Thus if t, y, y′ are the given initial
values, they must satisfy F(t, y, y′) = 0. However, see
INFO(11) above. The routine solves the system from

T to TOUT. One can continue the solution to get
results at additional values of TOUT. This is the
interval mode of operation. Intermediate results can
also be obtained by using the intermediate-output
capability.
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See page 7 for error conditions and the flags returned in
IDID.

All error diagnostics and messages are handled by calls
to the library subroutines MESS and DMESS or
SMESS of Chapter 19.3. The user can change the
printing and/or stopping actions taken by the error
message program or change the file to which such
messages are sent by calling MESS.

F. Supporting Information

The source language is ANSI Fortran 77. The original
code author is L. R. Petzold. Changes include a
subroutine name change, using one external
subprogram for system information, installation of
reverse communication, handling constraints,
computing initial derivative values, adding Söderlind’s
stepsize selection algorithm, and writing this document.
These were made by R. J. Hanson during the period

1998–2008, with advice from F. T. Krogh.

Entry Required Files

DDASLX amach, daxpy, dcopy, ddas1, ddasco,
ddasdb, ddasf, ddasgh, ddasin, ddasj,
ddaslv, ddaslx, ddasnm, ddastp, ddaswt,
ddot, dgbfa, dgbsl, dgefa, dgesl, dmess,
dnrm2, drot, drotg, dscal, dswap, idamax,
mess

DDASLS d1mach, daxpy, dcopy, dscal, dswap, dasum,
dgbfa, dgbsl, dgefa, dgesl

SDASLX amach, dcopy, dnrm2, isamax, mess, saxpy,
scopy, sdas1, sdasco, sdasdb, sdasf, sdasgh,
sdasin, sdasj, sdaslv, sdaslx, sdasnm, sdastp,
sdaswt, sdot, sgbfa, sgbsl, sgefa, sgesl,
smess, snrm2, srot, srotg, sscal, sswap

SDASLS r1mach, saxpy, scopy, sscal, sswap, sasum,
sgbfa, sgbsl, sgefa, sgesl

DRDDASL1

PROGRAM drddas l1
c>> 2009−10−21 DRDDASL1 Hanson/Krogh Fixed i n i t i a l i z a t i o n .
c>> 2008−10−26 DRDDASL1 Krogh Moved Format s ta tements up f o r C conv .
c>> 2008−10−24 DRDDASL1 Krogh Removed in INCLUDE statement & cDEC$ . . .
c>> 2008−09−02 DRDDASL1 Hanson added s t a r t i n g computation o f y ’
c>> 2008−08−26 DRDDASL1 Hanson added row dimensions to e v a l u a t o r s
c>> 2006−04−10 DRDDASL1 Krogh Removed d e c l a r a t i on o f unused E.
c>> 2002−05−29 DRDDASL1 Krogh Changes f o r C convers ion problem .
c>> 2001−10−11 DRDDASL1 R. J . Hanson Document Example Code ,

c So lve a C. W. Gear index=2 problem .
c Reduce i t to an index=1, s o l v e i t .
c Reduce i t f u r t h e r to index=0, s o l v e i t .
c Compare r e s u l t s , which are e q u i v a l e n t but
c not e x a c t l y equa l .

c−−D rep l a c e s ”?”: DR?DASL1, ?DASLX, ?DASLS, ?DASSF1, ?DASSF0
EXTERNAL ddass f0 , ddass f1
INTEGER ndig , ntimes
DOUBLE PRECISION t o l

c++S Defau l t NDIG = 4
c++ Defau l t NDIG = 8
c++ Su b s t i t u t e f o r NDIG below

PARAMETER ( ndig=8)
PARAMETER ( t o l =10.d0∗∗(−ndig ) )
INTEGER l iw , lrw , maxcon , neq , ldc , l t d

c Set number o f equa t i ons :
PARAMETER ( neq=2)

c Set maximum number o f c on s t r a i n t s .
PARAMETER ( maxcon=2)

c Work space s i z e s :
PARAMETER ( l iw=30+neq )
PARAMETER ( lrw=45+(5+2∗maxcon+4)∗neq+neq ∗∗2)
PARAMETER ( ntimes =10)
PARAMETER ( ldc=2∗neq , l t d=neq )
INTEGER i , i n f o (16 ) , id id , iwork ( l iw )
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DOUBLE PRECISION t , y ( neq ) , yprime ( neq ) , tout , r t o l ( neq ) , a t o l ( neq ) ,
& rwork ( lrw ) , so ln1 ( ntimes , neq ) , so ln0 ( ntimes , neq ) ,
& so lp1 ( ntimes , neq ) , so lp0 ( ntimes , neq )
DOUBLE PRECISION c ( ldc , l t d ) , f t o l , r nk to l

INTEGER kount0 , kount1
COMMON / counts / kount0 , kount1

60 FORMAT (6x , ’ Example Resu l t s f o r a Transformed Index−2 DAE Problem ’
&//10x , ’T ’ ,11x , ’Y1/Y2 ’ ,9x , ’Y1P/Y2P ’ )

70 FORMAT (6x , ’ D i f f e r e n c e s , ( Index−1) − ( Index−0) Values ’ //10x , ’T ’ ,
&11x , ’Y1/Y2 ’ ,9x , ’Y1P/Y2P ’ )

80 FORMAT (1p , 3 e15 .6/15 x , 2 e15 .6/ ’ ’ )
90 FORMAT (6x , ’ Index−1 and Index−0 r e s i d u a l e v a l u t i o n s : ’ ,2 i 5 )

100 FORMAT (6x , ’ I n i t i a l c o n d i t i o n s f o r y , y ’ ’ at t =0, index 1 system ’ )
110 FORMAT (6x , ’ I n i t i a l c o n d i t i o n s f o r y , y ’ ’ at t =0, index 0 system ’ )

c Tolerances :
DO 10 i =1,neq

a t o l ( i )= t o l
r t o l ( i )= t o l

10 CONTINUE
c Setup op t i ons :

DO 20 i =1 ,16
i n f o ( i )=0

20 CONTINUE
c Use p a r t i a l d e r i v a t i v e s prov ided in e va l ua t o r rou t i n e s :

i n f o (5)=2
c Constrain s o l u t i o n wi th 1 con s t r a i n t :

i n f o (10)=1
c Compute the i n i t i a l va lue o f YPRIME( ∗ ) :

t=0
f t o l=t o l
rnk to l=t o l

c Assign i n i t i a l y , and guess f o r y ’ , then ge t i n i t i a l y ’ .
y (1 ) = 1 .D0
y (2) = 0 .D0
yprime (1)=0.D0
yprime (2)=0.D0
CALL ddas l s ( ddass f1 , neq , t , y , yprime , in fo , f t o l , rnkto l , c ,

& ldc , l td , id id , rwork , lrw , iwork , l iw )
WRITE (∗ , 60 )
WRITE (∗ , 100)
WRITE (∗ , 80 ) t , y ( 1 ) , yprime ( 1 ) , y ( 2 ) , yprime (2 )

c Allow up to 5000 s t e p s :
i n f o (12)=5000

DO 30 i =1, ntimes
c I n t e g r a t e from T=I−1 to TOUT=T+1. Fina l TOUT=10.

t=i−1
tout=t+1
CALL ddas lx ( ddass f1 , neq , t , y , yprime , tout , in fo , r t o l , a to l ,

& id id , rwork , lrw , iwork , l iw )
WRITE (∗ , 80 ) tout , y ( 1 ) , yprime ( 1 ) , y ( 2 ) , yprime (2 )

c Save s o l u t i o n and d e r i v a t i v e f o r comparison to index 0 va l u e s .
so ln1 ( i ,1)=y (1)
so ln1 ( i ,2)=y (2)
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so lp1 ( i ,1)= yprime (1 )
so lp1 ( i ,2)= yprime (2 )

30 CONTINUE

c S t a r t i n t e g r a t i o n again .
i n f o (1)=0
DO 40 i =1,neq

a t o l ( i )= t o l
r t o l ( i )= t o l

40 CONTINUE
c Switch from 1 to 2 cons t ra in t s , and use the index 0 system .

i n f o (10)=2
WRITE (∗ , 70 )
t =0.D0

c Assign i n i t i a l y , and guess f o r y ’ , then ge t i n i t i a l y ’ .
y (1 ) = 1 .D0
y (2) = 0 .D0
yprime (1)=0.D0
yprime (2)=0.D0
CALL ddas l s ( ddass f0 , neq , t , y , yprime , in fo , f t o l , rnkto l , c ,

& ldc , l td , id id , rwork , lrw , iwork , l iw )
WRITE (∗ , 110)
WRITE (∗ , 80 ) t , y ( 1 ) , yprime ( 1 ) , y ( 2 ) , yprime (2 )

DO 50 i =1, ntimes
c I n t e g r a t e from T=I−1 to TOUT=T+1. Fina l TOUT=10.

t=i−1
tout=t+1
CALL ddas lx ( ddass f0 , neq , t , y , yprime , tout , in fo , r t o l , a to l ,

& id id , rwork , lrw , iwork , l iw )
c Use s o l u t i o n and d e r i v a t i v e d i f f e r e n c e s f o r comparison
c wi th index 1 va l u e s .

so ln0 ( i ,1)= so ln1 ( i ,1)−y (1 )
so ln0 ( i ,2)= so ln1 ( i ,2)−y (2 )
so lp0 ( i ,1)= so lp1 ( i ,1)−yprime (1 )
so lp0 ( i ,2)= so lp1 ( i ,2)−yprime (2 )
WRITE (∗ , 80 ) tout , so ln0 ( i , 1 ) , so lp0 ( i , 1 ) , so ln0 ( i , 2 ) , so lp0 ( i , 2 )

50 CONTINUE
c Print number o f r e s i d u a l e v a l u a t i on s f o r index 1 and index 0
c problems .

WRITE (∗ , 90 ) kount1 , kount0
END

SUBROUTINE ddass f1 ( t , y , yprime , de l ta , d1 , ldd , c j , i r e s , rwork ,
& iwork )

c
c Routine f o r the Gear index=2 problem .
c One equat ion i s d i f f e r e n t i a t e d to reduce i t to index 1 ,
c wi th a con s t r a i n t on the index 2 equat ion .

DOUBLE PRECISION t , y (∗ ) , yprime (∗ ) , d e l t a (∗ ) , d1 ( ldd , ∗ ) , c j , rwork (∗ ) ,
& eta , one , two , zero
INTEGER i r e s , iwork (∗ ) , ldd
INTEGER kount0 , kount1
COMMON / counts / kount0 , kount1
one=1.d0
two=2.d0
zero =0.d0
eta =10.d0

c This i s the se tup c a l l .
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IF ( i r e s . eq . 0 ) THEN
kount1=0

END IF

c The system r e s i d u a l va lue .
IF ( i r e s . eq . 1 ) THEN

d e l t a (1)= yprime (1)+ eta ∗ t ∗yprime (2)+( one+eta )∗y(2)− sin ( t )
c This second equat ion comes from d i f f e r e n t i a t i n g the second equat ion in
c s e c t i on C.1 , and s u b t r a c t i n g the r e s u l t from the f i r s t equa t ion .

d e l t a (2)=y(2)−two∗ sin ( t )
c Count func t i on e va l u a t i on s .

kount1=kount1+1
END IF

c The p a r t i a l o f the i t e r a t i o n matrix wi th r e s p e c t to y . This i s an
c index 1 system . d1 i s s e t to 0 p r i o r to a l l c a l l s here . Pa r t i a l s
c are based on equa t i ons above . Note t ha t \ p a r t i a l y ’ i / y i i s c j .

IF ( i r e s . eq . 2 ) THEN
d1 (1 ,1)= c j
d1 (1 ,2)=( one+eta)+ c j ∗ eta ∗ t
d1 (2 ,2)= one

END IF

c The cons t r a in ing equat ion a f t e r the co r r e c t o r has converged .
c Both p a r t i a l s and r e s i d u a l s are r e qu i r ed . This i s f o r the second
c equat ion in C. 1 .

IF ( i r e s . eq . 5 ) THEN
d1 (3 ,1)= one
d1 (3 ,2)= eta ∗ t
d e l t a (3)=y(1)+ eta ∗ t ∗y(2)−cos ( t )

END IF
c The va l u e s o f IRES=6,7 and 8 occur f o r the s t a r t i n g procedure
c t ha t s o l v e s f o r y ’ . F i r s t the p a r t i a l s wi th r e s p e c t to t o f what
c i s computedb when i r e s i s 1 . Here and below we are computing
c p a r t i a l s o f f not o f the i t e r a t i o n matrix .

IF ( i r e s . eq . 6 ) THEN
d e l t a (1)= eta ∗yprime (2)−cos ( t )
d e l t a (2)= −two∗cos ( t )

END IF
c Compute the p a r t i a l w. r . t y ’ o f the equa t i ons de f ined when IRES=1

IF ( i r e s . eq . 7 ) THEN
d1 (1 ,1)= one
d1 (1 ,2)= eta ∗ t

END IF
c Compute the p a r t i a l w. r . t y o f the equa t i ons de f ined when IRES=1

IF ( i r e s . eq . 8 ) THEN
d1 (1 ,2)= one+eta
d1 (2 ,2)= one

END IF
END

SUBROUTINE ddass f0 ( t , y , yprime , de l ta , d0 , ldd , c j , i r e s , rwork ,
& iwork )

c
c Routine f o r the Gear index=2 problem .
c One equat ion i s d i f f e r e n t i a t e d tw ice to reduce i t to index 0 .
c This g i v e s c on s t r a i n t s on the index 2 and index 1 equa t i ons .

DOUBLE PRECISION t , y (∗ ) , yprime (∗ ) , d e l t a (∗ ) , d0 ( ldd , ∗ ) , c j , rwork (∗ ) ,
& eta , one , two , zero
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INTEGER i , i r e s , iwork (∗ ) , j , ldd
INTEGER kount0 , kount1
COMMON / counts / kount0 , kount1
one=1.d0
two=2.d0
zero =0.d0
eta =10.d0

c This i s the se tup c a l l .
IF ( i r e s . eq . 0 ) THEN

kount0=0
END IF

c The system r e s i d u a l va lue .
IF ( i r e s . eq . 1 ) THEN

d e l t a (1)= yprime (1)+ eta ∗ t ∗yprime (2)+( one+eta )∗y(2)− sin ( t )
d e l t a (2)= yprime (2)−two∗cos ( t )

c Count f unc t i on e va l u a t i on s .
kount0=kount0+1

END IF

c The mixed p a r t i a l d e r i v a t i v e matrix .
c This i s an index 0 system .

IF ( i r e s . eq . 2 ) THEN
d0 (1 ,1)= c j
d0 (1 ,2)=( one+eta)+ c j ∗ eta ∗ t
d0 (2 ,2)= c j

END IF

c The cons t r a in ing equa t i ons a f t e r the co r r e c t o r has converged .
c Both p a r t i a l s and r e s i d u a l s are r e qu i r ed .

IF ( i r e s . eq . 5 ) THEN
d0 (3 ,1)= one
d0 (3 ,2)= eta ∗ t
d0 (4 ,1)= zero
d0 (4 ,2)= one
d e l t a (3)=y(1)+ eta ∗ t ∗y(2)−cos ( t )
d e l t a (4)=y(2)−two∗ sin ( t )

END IF
c The p a r t i a l w. r . t y ’ f o r the s t a r t i n g procedure
c Since t h i s i s an index 0 system the cases IRES=6,8 w i l l not occur

IF ( i r e s . eq . 7 ) THEN
d0 (1 ,1)= one
d0 (1 ,2)= eta ∗ t
d0 (2 ,2)= one

END IF
END

ODDDASL1

Example Resu l t s f o r a Transformed Index−2 DAE Problem

T Y1/Y2 Y1P/Y2P
I n i t i a l c o n d i t i o n s f o r y , y ’ at t =0, index 1 system

0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 2.000000E+00

1.000000E+00 −1.628912E+01 −2.847694E+01
1.682942E+00 1.080605E+00
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2.000000E+00 −3.678804E+01 −2.449373E+00
1.818595E+00 −8.322937E−01

3.000000E+00 −9.457193E+00 5.643603E+01
2.822400E−01 −1.979985E+00

4.000000E+00 5.989056E+01 6.818434E+01
−1.513605E+00 −1.307287E+00

5.000000E+00 9.617609E+01 −8.228807E+00
−1.917849E+00 5.673243E−01

6.000000E+00 3.449003E+01 −1.093527E+02
−5.588310E−01 1.920341E+00

7.000000E+00 −9.122422E+01 −1.193430E+02
1.313973E+00 1.507805E+00

8.000000E+00 −1.584428E+02 2.503480E+00
1.978716E+00 −2.910000E−01

9.000000E+00 −7.509246E+01 1.553490E+02
8.242370E−01 −1.822261E+00

1.000000E+01 1.079652E+02 1.792387E+02
−1.088042E+00 −1.678143E+00

D i f f e r e n c e s , ( Index−1) − ( Index−0) Values

T Y1/Y2 Y1P/Y2P
I n i t i a l c o n d i t i o n s f o r y , y ’ at t =0, index 0 system

0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 2.000000E+00

1.000000E+00 −5.444534E−09 1.148811E−07
5.286331E−10 5.637443E−09

2.000000E+00 9.030664E−09 −5.975787E−07
−4.492540E−10 1.429224E−08

3.000000E+00 7.262546E−10 −5.326531E−07
−8.426299E−11 2.284928E−09

4.000000E+00 3.102966E−08 4.156549E−07
−9.139132E−10 1.607341E−08

5.000000E+00 2.861000E−09 2.237059E−06
−1.723777E−11 −3.744174E−08

6.000000E+00 −1.730818E−08 −5.157416E−08
2.452695E−10 −2.679479E−11

7.000000E+00 −5.656071E−08 −5.471411E−07
6.758687E−10 −3.088880E−08

8.000000E+00 −1.684640E−08 −3.323030E−06
2.047635E−10 3.999238E−08

9.000000E+00 1.188216E−08 1.039281E−06
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−1.710334E−10 −5.074183E−09

1.000000E+01 5.870513E−08 −6.847629E−07
−7.596022E−10 −2.048200E−08

Index−1 and Index−0 r e s i d u a l e v a l u t i o n s : 796 672
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