17.1 Computation Using Derivative Arrays or
Univariate Taylor Series

A. Purpose

This set of subroutines performs computations using ar-
rays of length N+1, where each array contains the value
of a function, f(t), and its first N derivatives with re-
spect to t, evaluated at some point, to. Such an array
can alternatively be regarded as a scaled representation
of the first N + 1 coefficients of the Taylor series of f(t)
expanded at tg, since the coefficient of (¢t — t)* in such
a Taylor series is f(*)(t)/k! evaluated at tg.

This package provides a way of computing values of the
first N derivatives of a univariate function that is defined
by a sequence of computational steps involving arith-
metic and elementary functions, without the need to de-
rive and code expressions for the derivatives.

B. Usage

We shall use ¢ as the generic name of the single indepen-
dent variable with respect to which all derivatives are
defined. We shall use the term W-variable to denote an
(N+1)-tuple, consisting of a function value and values of
the function’s first N derivatives with respect to t, eval-
uated at some point. Note that the representation of ¢
as a W-variable evaluated at to is the (N+1)-tuple, (to,
1,0,0, .., 0).

This package consists of one subroutine, SWSET, for as-
signing a value to a W-variable, 22 subroutines for doing
arithmetic operations and computing elementary func-
tions using W-variables, and three supplementary sub-
routines, SWCHN, SWRCHN, and SPASCL. These will
be described in the following sections:

B.l SWSET ..o 1
B.2 Arithmetic and elementary functions............ 1]
B.3 SWCHN ..ottt B
B4 SWRCHN ..o 2
B.5 SPASCL.....iuiiitiiiiiiie e 3
B.6 Modifications for double-precision usage......... 3]

B.1 SWSET, Assigning a value to a W-variable
B.1.a Program Prototype, Single Precision
INTEGER N

REAL VAL, DERIV, W(>N+1)

Assign values to N, VAL, and DERIV

CALL SWSET(N, VAL, DERIV, W)\

Computed quantities are returned in W().

©1997 Calif. Inst. of Technology, 2015 Math & la Carte, Inc.

July 11, 2015

Computation Using Derivative Arrays or

B.1.b Argument Definitions

N [in] Highest order derivative to be considered. Re-
quire 0 < N < NMAX. See Section E for the definition
of NMAX.

VAL [in] Value to be assigned to the W-variable, W().

DERIV [in] Value to be assigned as the first derivative
of the W-variable, W().

W() [out] Array of length at least N + 1 in which this
subroutine will place N + 1 values to represent a W-
variable as follows: (VAL, DERIV, 0.0, ..., 0.0). The
user should set DERIV = 1.0 to define this variable as
the variable, ¢, with respect to which all differentia-
tion is done. The user can set DERIV = 0.0 to define
this W-variable to be a constant, i.e. a variable not
depending on t.

B.2 Arithmetic and elementary functions using
W-variables

In describing the following subroutines, X() and Y() de-
note input W-variables and Z() denotes an output W-
variable. The variables A and I are input variables that
are constant relative to ¢.

In most of these subroutines the output array Z() must
occupy storage locations distinct from any of the input
data. Exceptions to this rule are SWSUM, SWDIF, SW-
PRO, SWSUM1, SWDIF1, and SWPRO1. The subrou-
tine SWQUO, which computes z/y — z, permits z and
z to occupy the same storage, but y and z must occupy
distinct storage.

B.2.a Program Prototype, Single Precision
INTEGER N, I
REAL A, X(>N+1), Y(>N+1), Z(>N+1)

Assign values to N, I, A; X(), and Y(), as appropriate.

Two-argument operations with both arguments
depending on t.

CALL SWSUM(N, X, Y, Z) T4y — 2
CALL SWDIF(N, X, Y, Z) T—y -z
CALL SWPRO(N, X, Y, Z) TXY 2
CALL SWQUO(N, X, Y, Z) Ty — 2

CALL SWATN2(N, X, Y, Z) atan2(z,y) — z

where for atan2;, 7 £ &es 7 and tan(z) =2y |

Two-argument operations with only one
argument depending on t.

CALL SWSUMI(N, A, Y, Z) a+y—=z

CALL SWDIF1(N, A,Y,Z) a-y—=z

CALL SWPRO1(N, A, Y,Z) axy—=z

CALL SWQUOI1(N, A, Y, 7) aly — z

CALL SWPWRI(N, I, Y, Z) Yl 2
(See following note.)

Note: I may be positive, negative, or zero. If I = 0,
SWPWRI sets Z(1) = 1.0 and all derivative values of z
to 0.0, regardless of the given value of y. It is an error
to have y = 0.0 when I < 0.

One-argument operations with the argument
depending on t.

CALL SWSQRT(N, X, Z)
CALL SWEXP(N, X, Z)
CALL SWLOG(N, X, Z)

VT — z

exp(z) = z

CALL SWSIN(N, X, Z) sin(z) — 2
CALL SWCOS(N, X, Z) cos(x) = z
CALL SWTAN(N, X, Z) tan(z) — 2

()

()

(z)

n(z)

CALL SWASIN(N, X, Z) sin '(z)
CALL SWACOS(N, X, Z) cos (z) = 2

CALL SWATAN(N, X, Z) tan~!(z)

CALL SWSINH(N, X, Z) sinh(z)

CALL SWCOSH(N, X, Z) (z)

CALL SWTANH(N, X, Z) (z)

B.2.b Argument Definitions

N [in] Highest order derivative to be considered. Re-
quire 0 < N < NMAX. See Section E for the definition
of NMAX.

A [in] Floating point value that is independent of ¢.
I [in] Integer value that is independent of ¢.

X() [in] An input W-variable.

Y() [in] An input W-variable.

Z() [out] An output W-variable.

B.3 SWCHN, application of the chain rule

This subroutine is called by all of the elementary func-
tion subroutines. The user will not need to call it directly
unless the user is developing a new function subroutine
that is not conveniently representable in terms of the
available functions.

B.3.a
INTEGER N
REAL X(>N+1), F(>N+1)

Program Prototype, Single Precision

17.1-2

Computation Using Derivative Arrays or Univariate Taylor Series

Assign values to N, X(), and F().

| CALL SWCHN(N, X, F) |

Computed quantities are returned in F().

B.3.b Argument Definitions

N [in] Highest order derivative to be considered. Re-
quire 0 < N < NMAX. See Section E for the definition
of NMAX.

X() [in] On entry, X() must contain z(ty) and deriva-
tives through order N of z(t) with respect to ¢t. X()
will be unchanged by this subroutine.

F() [inout] On entry, F() must contain f(xo) and
derivatives through order N of f(x) with respect to z,
evaluated at g = x(tp). On return F() will contain
f(z(to)) and derivatives through order N of f(z(t))
with respect to t, evaluated at ty. Note that the con-
tents of F(1) will remain unchanged.

B.4 SWRCHN, application of the reverse chain
rule

This subroutine reverses the action of SWCHN, in the
sense that if one were to make the two calls

CALL SWCHN(N, X, F)
CALL SWRCHN(N, X, F)

the first would transform the contents of the array F(),
and the second would (if X(2) is nonzero) transform the
contents of F() back to the same values (to within com-
putational errors) as before the first call. See Section C
for application of SWRCHN to series reversion.

B.4.a Program Prototype, Single Precision
INTEGER N

REAL X(>N+1), F(>N+1)

Assign values to N, X(), and F().

| CALL SWRCHN(N, X, F)]

Computed quantities are returned in F().

B.4.b Argument Definitions

N [in] Highest order derivative to be considered. Re-
quire 0 < N < NMAX. See Section E for the definition
of NMAX.

X() [in] On entry, X() must contain z(ty) and deriva-
tives through order N of z(t) with respect to t. X(2),
representing dz/dt evaluated at to, must be nonzero.
The contents of X(1) will not be used by this subrou-
tine. X() will be unchanged by this subroutine.

July 11, 2015

F() [inout] On entry, F() must contain f(z(to)) and
derivatives through order N of f(x(t)) with respect
to t, evaluated at ¢ = t¢. On return F() will contain
f(xo) and derivatives through order N of f(x) with
respect to z, evaluated at xo = x(tg). Note that the
contents of F(1) will remain unchanged.

B.5 SPASCL, computation of the “Pascal tri-
angle” of binomial coefficients

B.5.a Program Prototype, Single Precision
INTEGER N
REAL C(> 1+ (N*(N+1))/2)

Assign a value to N.

| CALL SPASCL(N, C) |

Computed quantities are returned in C().

B.5.b Argument Definitions

N [in] Highest order derivative to be considered. Re-
quire 0 < N < NMAX. See Section E for the definition
of NMAX.

C() J[out] On return will contain values constituting the
“Pascal triangle” of binomial coeflicients. For exam-
ple, if N = 4, the Pascal triangle is

1
11
1 21
1 3 3 1
1 4 6 41

SPASCL omits the first element of each row except the
first, and thus returns the 11 values: 1, 1, 2, 1, 3, 3, 1,
4,6, 4, 1.

B.6 Modifications for Double Precision

For double-precision usage, replace the initial S in the
name of each subroutine with D, and replace the REAL
declarations by DOUBLE PRECISION.

C. Examples and Remarks
As a demonstration problem, consider the following as-

signments:

t=2

z1 = log(sqrt(t))
29 = exp(2 * z1)
d= Z9 - t

This should result in zo = ¢t and d = 0. These quanti-
ties and their derivatives through order 3 with respect

July 11, 2015

Computation Using Derivative Arrays or Univariate Taylor Series

to t are computed by the program DRDCOMP. The re-
sults are shown in ODDCOMP. Note that d and all of its

derivatives are zero to machine accuracy, as they should
be.

The running time for this package is approximately pro-
portional to N®. To save time when developing new code
using this package, one may run with N = 0 until one is
satisfied that the function evaluation is as desired, and
then increase N to activate the derivative computation.

Implicit functions and series reversion

Let [z;t] denote a W-variable containing = and all of its
derivatives through order N with respect to ¢, evaluated
at to. Let g = x(fp). Suppose one would like to have
[t;x]. This would represent the inverse function that
is defined implicitly by [z;t]. When the components of
these arrays are interpreted as scaled coefficients of Tay-
lor series the transformation from [z;t] to [t; z] is known
as series reversion.

The subroutine SWRCHN can be used to produce [t; x].
Note, from the specifications in Section B.4, that given
[;t] and [f;t], SWRCHN transforms [f;¢] to [f;x]. For-
mally replacing the symbol f by ¢, we see that given [z;]
and [t;t], SWRCHN transforms [t;¢] to [¢;z], thus pro-
ducing the desired object. Note that the W-variable,
[t;t], needed as part of the input, is just (¢o, 1, 0, ..., 0).

D. Functional Description

The “W” in the names of subroutines in this package
refers to R. E. Wengert, who, in [I], presented the ideas
on which the package is based. Subsequent authors have
incorporated this approach into more automated systems
[2] that would probably be easier to use than the present
package, but such systems present various hurdles re-
garding acquisition and installation. The present im-
plementation provides the basic capabilities in a highly
portable form.

The fundamental idea is simply to provide, for each ba-
sic mathematical operation, code that not only performs
the operation but propagates derivative values up to the
desired order. For example, to support the sine function
with derivatives through second degree, we note that if

z =siny,
then
2z =1y cosy,
and
2" =y cosy — y'* siny,

where the primes denote derivatives with respect to an
independent variable, t. Clearly these formulas permit
one to write a subroutine that can accept y, 3, and y”
as input, and produce z, 2/, and 2" as output.

17.1-3

This approach has been systematized for arbitrary N by
appropriate use of the chain rule of differentiation. Our
subroutine SWCHN implements the chain rule as

doL=0,N-1
call SWPRO(L, F(N+1-L), X(2), F(N+1-L))
enddo

Since SWCHN is called by all of the elementary function
subroutines, this loop essentially determines the depen-
dence on N of the running time of the whole package.
SWPRO is an O(N?) process and SWCHN is an O(N?)
process. To improve efficiency we have coded the cases
of N =0, 1, 2, 3, and 4 as special cases in SWPRO.
Multiplication counts in SWPRO and SWCHN are as
follows:

N=012 3 4 5 6 7 8 9 10
SWPRO 1 3 7 12 19 27 37 48 61 75 91
SWCHN 0 1 4 11 23 42 69 106 154 215 290

References

1. R. E. Wengert, A simple automatic derivative evalua-
tion program, Comm. ACM 7, 8 (Aug. 1964) 463-464.

2. Andreas Griewank and George F. Corliss, editors,
Automatic Differentiation of Algorithms, Pro-
ceedings of SIAM Workshop on Automatic Dif-
ferentiation of Algorithms, SIAM, Philadelphia
(Jan. 1991) 353 pages. Contains 31 papers reporting
the 1991 state of the art in algorithms and software
for automatic differentiation. Includes paper by Lawson
specifically relating to the method for series reversion
mentioned above in Section C.

3. C. L. Lawson, Computing Derivatives using W-
arithmetic and U-arithmetic. Internal Comput-

ing Memorandum 289, Jet Propulsion Laboratory,
Pasadena, CA (Sept. 1971).

E. Error Procedures and Restrictions
E.1 Upper limit on the derivative order, N

Subroutines SWATAN, SWSUM, and SWPRO in this
package contain internal arrays whose dimensions de-
pend on NMAX. NMAX is a PARAMETER in each of
these subroutines, nominally set to 10. This limits the
derivative order argument, N, in all of the subroutines
to 10. The user would need to increase NMAX in these
three subroutines if higher order derivatives are needed.

E.2 Invalid arguments for derivative computa-
tion

The user will likely be accustomed to avoiding sending
invalid arguments to the elementary functions, such as

17.1-4

Computation Using Derivative Arrays or Univariate Taylor Series

a negative argument to the square root. In comput-
ing derivatives there are some additional singularities to
avoid. Note that the derivative is infinite at zero for the
square root, and at 41 for arcsin and arccosine.

E.3 Error handling

Following is a list of error conditions the package detects
and for which error messages are issued. These errors are
fatal in the sense that the requested operation cannot be
done; however, the default action is to return after issu-
ing an error message. The user can use the MATH77
library subroutine, ERMSET of Chapter 19.2, to alter
this action to cause a STOP if desired. Error conditions
not on this list, e.g., negative argument in log, will be
handled by the usual host system error handler.

Error No.

& Program Explanation

1 SWASIN Infinite derivative when arg = —1 or +1
1 SWACOS Infinite derivative when arg = —1 or +1
2 SWSQRT Infinite derivative when arg = 0

3 SWQUO1 Zero divisor

4 SWPWRI Y**I is infinite when Y = 0 and I < 0

5 SWPRO Require dimension NMAX > N

6 SWQUO Require dimension NMAX > N

7 SWQUO Zero divisor.

8 SPASCL Require N >0

9 SWRCHN Require X(2) # 0.

F. Supporting Information

The source language is ANSI Fortran 77.

All of the double precision entry points require files:
DWCOMP, ERFIN, ERMSG, IERM1, IERV1.

For single precision, file SWCOMP is required in place
of file DWCOMP.

Entries
DPASCL DWACOS DWASIN DWATAN
DWATN2 DWCHN DWCOS DWCOSH
DWDIF DWDIF1 DWEXP DWLOG
DWPRO DWPRO1 DWPWRI DWQUO
DWQUO1 DWRCHN DWSET DWSIN
DWSINH DWSQRT DWSUM DWSUM1
DWTAN DWTANH SPASCL SWACOS
SWASIN SWATAN SWATN2 SWCHN
SWCOS SWCOSH SWDIF SWDIF1
SWEXP SWLOG SWPRO SWPRO1
SWPWRI SWQUO SWQUO1 SWRCHN
SWSET SWSIN SWSINH SWSQRT
SWSUM SWSUM1 SWTAN SWTANH

Designed by C. L. Lawson, JPL, 1971. Adapted to For-
tran 77 for the JPL MATH7Y7 library, Aug. 1987.

July 11, 2015

July 11, 2015

DRSWCOMP

c program DRSWCOMP

c>> 1994—10—19 DRSWCOMP Krogh Changes to use M7ICON

c>> 1987—12—09 DRSWCOMP Lawson Initial Code.

c—S replaces 7%7: DR?WCOMP, ¢?WSET, ¢?VECP, ?WSQRT, ?WLOG, ?WPROI, ¢WEXP,
—& ¢WDIF, ¢WCOOMP

c Demo driver for the SWCOMP package. Derivative arithmetic.

c

integer N, NDIM, NMAX

parameter (NMAX = 3, NDIM = NMAX+1)

real T(NDIM), X1(NDIM), Z1(NDIM), X2(NDIM), Z2(NDIM)
real DIFF (NDIM) , ONE, TWO

parameter (ONE = 1.0E0, TWO = 2.0EO0)

printx, 'DRSWCOMP.. Demo driver for the SWCOOMP package.’
N = NMAX
c Set T = 2.0
call SWSET(N, TWO, ONE, T)
call SVECP(T,N+1,70 T =")
c Compute Z1 = log(sqrt(T))
call SWSQRT(N, T, X1)
call SWLOG(N, X1, Z1)
call SVECP(Z1,N+1,’0 Z1 = log(sqrt(T)) =")

Compute Z2 = exp (2.0 % Z1)
call SWPROL(N, TWO, Z1, X2)
call SWEXP(N, X2, Z72)
call SVECP(Z2,N+1,’0 Z2 = exp (2.0 * Z1) =")

Diff =722 - T
call SWDIF(N, Z2, T, DIFF)
call SVECP(DIFF ,N+1,’0 DIFF = Z2 — T =")
stop
end

ODSWCOMP

DRSWOOMP.. Demo driver for the SWOOMP package.

T =

1 TO 4 2.000000 1.000000 0.000000 0.000000
Z1 = log(sqrt(T)) =

1 TO 4 0.3465736 0.2500000 —0.1250000 0.1250000

Z2 = exp(2.0 % Z1) =
1 TO 4 2.000000 0.9999999 0.000000 2.9802322E-08

DIFF = 722 — T =
1 TO 4 —1.1920929E-07 —1.1920929E-07 0.000000 2.9802322E-08

Computation Using Derivative Arrays or Univariate Taylor Series

17.1-5

	Computation Using Derivative Arrays or Univariate Taylor Series
	Purpose
	Usage
	SWSET, Assigning a value to a W-variable
	Arithmetic and elementary functions using W-variables
	SWCHN, application of the chain rule
	SWRCHN, application of the reverse chain rule
	SPASCL, computation of the ``Pascal triangle" of binomial coefficients
	Modifications for Double Precision

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Upper limit on the derivative order, N
	Invalid arguments for derivative computation
	Error handling

	Supporting Information

