
18.1 Sorting One-Dimensional Arrays in Memory

A. Purpose

Sort one-dimensional arrays of Integers, Single Precision
floating point numbers, Double Precision floating point
numbers or Character strings. Facilities are provided to
sort the arrays in place, or to produce a permutation
vector defining the sorted order.

B. Usage

Usage for sorting numeric arrays in place, sorting nu-
meric arrays using a permutation vector, sorting char-
acter string arrays in place, and sorting character string
arrays using a permutation vector, is described in Sec-
tions B.1 through B.4 below, respectively.

B.1 Sorting One-Dimensional Arrays of Num-
bers in Place

B.1.a Program Prototype, Integer

INTEGER M, N, I(≥N)

Assign values to M, N and I(M:N). Require 1 ≤ M ≤ N.

CALL ISORT (I, M, N)

Following the call to ISORT the elements I(M:N) will
have been put into ascending order according to their
algebraic (signed) values.

B.1.b Argument Definitions

I() [inout] An array containing the integers to be
sorted.

M [in] The lower bound, in I(), of the array of integers
to be sorted.

N [in] The upper bound, in I(), of the array of integers
to be sorted. The only elements of I referenced are
I(M:N).

B.1.c Program Prototype, Real

To sort an array of real numbers, change the type of I()
from INTEGER to REAL, and change the subprogram
name from ISORT to SSORT.

B.1.d Program Prototype, Double Precision

To sort an array of double precision numbers, change
the type of I() from INTEGER to DOUBLE PRECI-
SION, and change the subprogram name from ISORT
to DSORT.

B.2 Sorting One-Dimensional Arrays of Num-
bers using a Permutation Vector

B.2.a Program Prototype, Integer

INTEGER M, N, I(≥N), IP(≥N)

Assign values to M, N and I(M:N). Require 1 ≤ M ≤ N.

CALL ISORTP (I, M, N, IP)

Following the call to ISORTP the contents of IP(M:N)
define the sorted order.

B.2.b Argument Definitions

I() [in] An array containing the integers to be sorted.

M [in] The lower bound, in I(), of the array of integers
to be sorted.

N [in] The upper bound, in I(), of the array of integers
to be sorted. The only elements of I and IP refer-
enced are I(M:N) and IP(M:N).

IP() [out] An array to contain the definition of the
sorted sequence. IP(M:N) is set so that the (1 + J −
M)th element of the sorted sequence is I(IP(J)) for M
≤ J ≤ N.

B.2.c Using a Pre-specified Permutation Vector

INTEGER M, N, I(≥ max), IP(≥N) [max is the
maximum value appearing in IP(M:N).]

Assign values to M, N, IP(M:N) and elements of I() in-
dexed by IP(M:N). Require 1 ≤ M ≤ N. IP(M:N) must
be distinct and positive, but it is not necessary that they
be a permutation of a sequence of length N − M + 1.

CALL ISORTQ (I, M, N, IP)

Following the call to ISORTQ the contents of IP(M:N)
define the sorted order.

B.2.d Argument Definitions

The arguments for ISORTQ are the same as those for
ISORTP, except that IP has [inout] intent instead of
[out].

B.2.e Program Prototype, Real

To sort an array of real numbers, change the type of
I() from INTEGER to REAL, and change the subpro-
gram name from ISORTP or ISORTQ to SSORTP or
SSORTQ, respectively.

B.2.f Program Prototype, Double Precision

To sort an array of double precision numbers, change
the type of I() from INTEGER to DOUBLE PRECI-
SION, and change the subprogram name from ISORTP
or ISORTQ to DSORTP or DSORTQ, respectively.

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Sorting One-Dimensional Arrays in Memory 18.1–1

B.3 Sorting One-Dimensional Arrays of Char-
acter Strings in Place

B.3.a Program Prototype

INTEGER M, N, K, L

CHARACTER*(≥L) C(≥N), CTEMP

Assign values to M, N, K, L and C(M:N). Require
1 ≤ M ≤ N and 1 ≤ K ≤ L.

CALL CSORT (C, M, N, K, L, CTEMP)

Following the call to CSORT the contents of C(M:N)
are such that the (1 + J − M)th element of the sorted
sequence is C(IP(J)) for M ≤ J ≤ N. The Jth element
of the sorted sequence is ”.LE.” the J+1st element. The
effect of ”.LE.” applied to character strings depends on
the computer system.

B.3.b Argument Definitions

C() [inout] An array containing the array of character
strings to be sorted.

M [in] The lower bound, in C(), of the array of charac-
ter strings to be sorted.

N [in] The upper bound, in C(), of the array of char-
acter strings to be sorted. The only elements of C()
referenced are C(M:N).

K [in] The lower bound in each element of C() of the
part of the character string that is to determine the
order.

L [in] The upper bound in each element of C() of the
part of the character string that is to determine the
order.

CTEMP [scratch] A scalar character string having a
length at least as long as elements of C().

B.4 Sorting One-Dimensional Arrays of Char-
acter Strings using a Permutation Vector

B.4.a Program Prototype

INTEGER M, N, K, L, IP(≥N)

CHARACTER*(≥L) C(≥N)

Assign values to M, N, K, L and C(M:N). Require
1 ≤ M ≤ N and 1 ≤ K ≤ L.

CALL CSORTP (C, M, N, K, L, IP)

Following the call to CSORTP the contents of IP(M:N)
define the sorted order.

B.4.b Argument Definitions

C() [in] An array containing the array of character
strings to be sorted.

M [in] The lower bound, in C(), of the array of charac-
ter strings to be sorted.

N [in] The upper bound, in C(), of the array of char-
acter strings to be sorted. The only elements of C()
and IP() referenced are C(M:N) and IP(M:N).

K [in] The lower bound in each element of C() of the
part of the character string that is to determine the
order.

L [in] The upper bound in each element of C() of the
part of the character string that is to determine the
order.

IP() [out] An array to contain the definition of the
sorted sequence. The contents of IP(M:N) are per-
muted so that the (1+J−M)th element of the sorted
sequence is C(IP(J)) for M ≤ J ≤ N. The Jth element
of the sorted sequence is ”.LE.” the J+1st element.
The effect of ”.LE.” applied to character strings de-
pends on the computer system.

B.4.c Using a Pre-specified Permutation Vector

INTEGER M, N, K, L, IP(≥N)

CHARACTER*(≥L) C(≥ max) [max is the maxi-
mum value appearing in IP(M:N).]

Assign values to M, N, K, L, IP(M:N) and elements
of C() indexed by IP(M:N). Require 1 ≤ M ≤ N and
1 ≤ K ≤ L. IP(M:N) must be distinct and positive, but
it is not necessary that they be a permutation of a se-
quence of length N − M + 1.

CALL CSORTQ (C, M, N, K, L, IP)

Following the call to CSORTQ the contents of IP(M:N)
define the sorted order.

B.4.d Argument Definitions

The arguments for CSORTQ are the same as those for
CSORTP, except that IP has [inout] intent instead of
[out].

C. Examples and Remarks

C.1 Example

The program DRSSORT illustrates the use of SSORT
and SSORTP to sort 1000 randomly generated real num-
bers. The output should consist of the two lines

SSORTP succeeded

SSORT succeeded

18.1–2 Sorting One-Dimensional Arrays in Memory July 11, 2015

C.2 Sorting According to Other Orders

To sort an array of numbers into descending order, re-
place each element of the array I by the negative of its
original value. To sort an array of numbers into ascend-
ing order according to the absolute values of its elements,
replace each element by its absolute value. To sort an
array of numbers into descending order according to the
absolute values of its elements, replace each element by
the negative of its original absolute value. If the original
signs are important, save the original data, and sort us-
ing a permutation vector. To sort the rows or columns
of a rectangular array, copy the desired row or column to
an auxiliary array, and use ISORTP, SSORTP, DSORTP
or CSORTP, as appropriate. The resulting permutation
vector defines the order of the rows or columns, as ap-
propriate.

C.3 Stability

A sorting method is said to be stable if the original rel-
ative order of equal elements is preserved. The quick-
sort algorithm is not inherently stable. The GSORTP
subprogram, described in Chapter 18.2, may be used to
impose stability.

D. Functional Description

All of the subprograms use the quicksort algorithm, due
originally to C. A. R. Hoare, as modified by T. N. Hib-
bard and R. Sedgewick. In the basic quicksort algorithm
the sorting problem, say P, is divided into two subprob-
lems, say P1 and P2, so that every element in P1 should
be sorted before any element of P2. Each subproblem is
then sorted, using quicksort recursively.

The lower bound for the running time of an algorithm
that sorts by comparing elements is O(n log n), where n
is the number of elements to be sorted. The expected
running time of quicksort is O(n log n), but the worst
case running time is O(n2). Nevertheless, because of
its low internal overhead, quicksort is usually the fastest
sorting method.

The Hibbard modification of the basic quicksort algo-
rithm replaces recursion by using a stack to keep track
of the unsorted subproblems, and always puts the larger
of the two subproblems onto the stack before the smaller.
By putting subproblems onto the stack in this order, the
size of the stack is bounded by log2 n.

Let L and R be the left and right boundaries of the
present subproblem. The Sedgewick modifications of the
basic quicksort algorithm consist of the following:

(a) The partitioning element, the element used to decide
whether another element is in subproblem P1 or P2,
is chosen to be the median of the Lth, Rth and mid-

dle elements. This choice makes it less likely that the
running time will be O(n2).

(b) The Lth, Rth and middle elements are sorted so the
Lth element is the smallest and the Rth is the largest.
This removes the need for a check in the partitioning
loop, the innermost loop of the sort algorithm.

(c) The median element is exchanged with the R − 1th

element. This modification, with the previous one,
allows the partitioning loop to operate on R − L −2
elements instead of R − L + 1 elements.

(d) Small subproblems are not put onto the stack. Thus
the data are sorted into small blocks, but not neces-
sarily sorted within the blocks. The final sorting step
uses an insertion sort, which has running time that is
O(n) if the data are partly ordered in blocks of size
bounded by a constant.

These modifications together have the effect of reducing
the average running time by 20% to 30%, as compared to
a näıve implementation of the basic quicksort algorithm.

References

1. Robert Sedgewick, Algorithms, Addison Wesley,
Reading, Mass. (1983).

E. Error Procedures and Restrictions

None of the subprograms detects or reports an erroneous
condition.

The only limitation on the size of array that can be
sorted is a limitation on the amount of memory avail-
able to contain the array, and the depth of an internal
stack in each routine. Due to the Hibbard modification
of Quicksort, the stack depth cannot exceed log2 n. The
internal stack has a maximum depth of 32. This permits
N − M to be as large as 4,294,467,295. The limit on N
− M is not checked.

F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

Designed and coded by W. V. Snyder, JPL 1988. Mod-
ified 1992.

July 11, 2015 Sorting One-Dimensional Arrays in Memory 18.1–3

Entry Required Files

CSORT CSORT
CSORTP CSORTP
CSORTQ CSORTP
DSORT DSORT
DSORTP DSORTP
DSORTQ DSORTP

Entry Required Files

ISORT ISORT
ISORTP ISORTP
ISORTQ ISORTP
SSORT SSORT
SSORTP SSORTP
SSORTQ SSORTP

DRSSORT

c program DRSSORT
c>> 1994−10−19 DRSSORT Krogh Changes to use M77CON
c>> 1989−06−13 DRSSORT CLL Changed ”sranua (r” to ” sranua (d”
c>> 1988−11−20 DRSSORT Snyder I n i t i a l code .
c−−S r ep l a c e s ”?”: DR?SORT, ?SORT, ?SORTP, ?RANUA
c
c Test d r i v e r f o r SSORT and SSORTP.
c
c Construct an array o f 1000 random numbers us ing SRANUA.
c Sort i t us ing SSORTP.
c Check whether i t i s in order .
c Sort i t us ing SSORT.
c Check whether i t i s in order .
c

log ica l OK
integer I , P(1 : 1000)
real X(1 : 1000)

c
c Generate 1000 random numbers

ca l l sranua (x , 1000)
c Sort them us ing SSORTP. Assume the s o r t w i l l work .

ok=.TRUE.
ca l l s s o r tp (x , 1 , 1000 , p)

c Check the order .
do 10 i = 2 , 1000

i f (x (p(i)) . l t . x (p(i −1))) ok=.FALSE.
10 continue

c Print the r e s u l t s .
i f (ok) then

print ∗ , ’SSORTP succeeded ’
else

print ∗ , ’SSORTP f a i l e d ’
end i f

c Sort them us ing SSORT. Assume the s o r t w i l l work .
ok=.TRUE.
ca l l s s o r t (x , 1 , 1000)

c Check the order .
do 20 i = 2 , 1000

i f (x (i) . l t . x (i −1)) ok=.FALSE.
20 continue

c Print the r e s u l t s .
i f (ok) then

print ∗ , ’SSORT succeeded ’
else

print ∗ , ’SSORT f a i l e d ’
end i f

c
end

18.1–4 Sorting One-Dimensional Arrays in Memory July 11, 2015

	Sorting One-Dimensional Arrays in Memory
	Purpose
	Usage
	Sorting One-Dimensional Arrays of Numbers in Place
	Sorting One-Dimensional Arrays of Numbers using a Permutation Vector
	Sorting One-Dimensional Arrays of Character Strings in Place
	Sorting One-Dimensional Arrays of Character Strings using a Permutation Vector

	Examples and Remarks
	Example
	Sorting According to Other Orders
	Stability

	Functional Description
	Error Procedures and Restrictions
	Supporting Information

