
18.2 Sorting Data of Arbitrary Structure in Memory

A. Purpose

Sort data having an organization or structure not sup-
ported by one of the subprograms in Chapter 18.1, for
example, data having more than one key to determine
the sorted order. The subprogram INSORT in Chap-
ter 18.3 has similar functionality to GSORTP and is
more efficient if the data are initially partly ordered, or
the ordering criterion is expensive.

B. Usage

B.1 Program Prototype

INTEGER N, IP(≥ |N|), COMPAR

EXTERNAL COMPAR

Assign values to N and data elements indexed by 1
through N. Require N ≥ 1.

CALL GSORTP (COMPAR, N, IP)

Following the call to GSORTP the contents of IP(1)
through IP(N) are such that the Jth element of the sorted
sequence is the IP(J)th element of the original sequence.

B.2 Argument Definitions

COMPAR [in] An INTEGER FUNCTION subpro-
gram that defines the relative order of elements of the
data. COMPAR is invoked as COMPAR(I, J), and is
expected to return −1 (or any negative integer) if the
Ith element of the original data is to precede the Jth

element in the sorted sequence, +1 (or any positive
integer) if the Ith element is to follow the Jth ele-
ment, and zero if the order is immaterial. GSORTP
does not have access to the data. It is the caller’s
responsibility to make the data known to COMPAR.
Since COMPAR is a dummy procedure, it may have
any name. Its name must appear in an EXTERNAL
statement in the calling program unit.

N [in] |N| is the number of elements to sort, and the
upper bound of subscripts to use to access IP. If N >
0 then IP(I) is initialized to I, for 1 ≤ I ≤ N . Actual
arguments for COMPAR are always elements of IP.

IP() [out] An array to contain the definition of the
sorted sequence. IP(1:N) are set so the Jth element
of the sorted sequence is the IP(J)th element of the
original sequence.

C. Examples and Remarks

Program DRGSORTP illustrates the use of GSORTP to
sort 1000 randomly generated real numbers. The output
should consist of the single line

GSORTP succeeded

Stability

A sorting method is said to be stable if the original rela-
tive order of equal elements is preserved. This subroutine
uses the quicksort algorithm, which is not inherently sta-
ble. To impose stability, return COMPAR = I − J if the
Ith and Jth elements are equal.

D. Functional Description

See Section 18.1.D.

E. Error Procedures and Restrictions

See Section 18.1.E.

F. Supporting Information

The source language for these subroutines is ANSI For-
tran 77.

Entry Required Files

GSORTP GSORTP

Designed and coded by W. V. Snyder, JPL 1988.

c©1997 Calif. Inst. of Technology, 2015 Math à la Carte, Inc.

July 11, 2015 Sorting Data of Arbitrary Structure in Memory 18.2–1

DRGSORTP

c>> 1995−05−28 DRGSORTP Krogh Converted SFTRAN to Fortran
c>> 1988−11−22 DRGSORTP Snyder I n i t i a l code .
c
c Test d r i v e r f o r GSORTP.
c
c Construct an array o f 1000 random numbers us ing SRANUA.
c Sort i t us ing GSORTP.
c Check whether i t i s in order .
c

log ica l OK
integer I , COMPAR, P(1 : 1000)
external COMPAR
real R(1 : 1000)
common /RCOM/ R

c
c Generate 1000 random numbers

ca l l sranua (r , 1000)
c Sort them us ing GSORTP.

ok=.TRUE.
ca l l gsor tp (compar ,1000 , p)

c Check the order .
do 10 i = 2 , 1000

i f (r (p(i)) . l t . r (p (i −1))) ok=.FALSE.
10 continue
c Print the r e s u l t s .

i f (ok) then
print ∗ , ’GSORTP succeeded ’

else
print ∗ , ’GSORTP f a i l e d ’

end i f
c

end
integer function COMPAR(I , J)

c
c Determine the r e l a t i v e order o f R(I) and R(J) , where R i s in
c the common b l o c k /RCOM/. Return −1 i f R(I) shou ld preceed R(J)
c in the so r t ed order , +1 i f R(I) shou ld f o l l ow R(J) , and 0
c o therw i s e .
c

integer I , J
real R(1 : 1000)
common /RCOM/ R
i f (R(I)−R(J)) 10 ,20 ,30

10 compar=−1
return

20 compar=0
return

30 compar=+1
return

c
end

18.2–2 Sorting Data of Arbitrary Structure in Memory July 11, 2015

	Sorting Data of Arbitrary Structure in Memory
	Purpose
	Usage
	Program Prototype
	Argument Definitions

	Examples and Remarks
	Functional Description
	Error Procedures and Restrictions
	Supporting Information

