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Abstract 

Although the GN (Gauss-Newton) algorithm was written in the 1980’s, we have recently 
simplified the algorithm and updated the Fortran, and we would like to make it available to 
others through the open-source literature. The algorithm follows the general guidance given in 
the 1983 book by Dennis and Schnabel, using an augmented Gauss-Newton, Levenberg–
Marquardt approach.  We have tested the algorithm against 36 difficult nonlinear minimization 
problems based on the 1981 article by Moré, Garbow, and Hillstrom.  For these test problems 
the GN algorithm compares favourably to other minimization routines in terms of 1) 
effectiveness (ability to find the solution), 2) efficiency (number of function evaluations required 
for convergence), and 3) complexity (number of executable lines of code).  The most similar 
competing open-source algorithm is the LMDIF algorithm from MINPACK by Garbow, 
Hillstrom, and Moré, against which the more detailed comparisons are made.  

Running title: GN--a Simple and Effective Nonlinear Least-Squares Algorithm  

 
Keywords: Nonlinear Least squares, nonlinear minimization, robust, optimization, finite-
difference derivatives, augmented Gauss-Newton, Levenberg–Marquard.
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1. Introduction 
 
The problem of designing a reliable and efficient minimizer has been around for a long time and 
while the favorite version has changed through time, there are some basics. Perhaps the most 
basic, assuming differentiability, is to take steps s along the downhill gradient of the sum of 
squares f and can be called the Gauss Method, where 
  

fs −∇∝    . 
 
If the step size is small enough, one can be assured that the step will decrease f. 
 
In contrast the Newton Method uses the condition that the gradient is zero at the minimum 
 

( ) 0=+∇ sxf    , 
 
where x is the current point in parameter space.  By first-order Taylor expansion around the 
current point, this equation becomes a linear equation for the step. 
 
In real problems, although Newton's method can be very fast near the solution—one step in the 
linear case—it may overstep and cause evaluation errors on more difficult nonlinear problems. 
The Gauss method usually under-steps and requires too many evaluations.  
 
The algorithm GN (Gauss-Newton) presented here uses the Levenberg–Marquardt[1,2] trust-
region compromise and many ideas from the excellent book by Dennis and Schnabel[3].  The 
algorithm is straightforward, and the Fortran is relatively small sized (323 executable lines). 
 
Matrix methods follow Davidon's approach [4] to updating the Hessian matrix and use a search 
or a reevaluation dog leg to improve the function and matrix.  These methods became the 
Davidon-Fletcher-Powell (DFP) method and that was superseded by updating the inverse in the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [5-8] method. These methods use a line search 
along the gradient direction but the trust region method is likely more evaluation efficient and 
numerically safer. 
 
We assume that evaluations are expensive. The evaluations may be complex or involve 
processing much data.  The goal is to get to the best values reliably with the least number of 
evaluations.  Furthermore, the method is designed to be robust and able to handle most 
numerical problems.   
 
The functions to be optimized are often not easy to analytically differentiate and are prone to 
errors in the math, so we always use finite differences to form the derivatives. To reduce the 
number of evaluations we update the second-derivative matrix until it is not giving results close 
to expectations or we have reached what believe to be a solution. 
 
When needed, adding a large number to a residual (penalty) may be used to constrain the 
solution. 
 
The very useful set of test problems from the article by Moré, Garbow, and Hillstrom[9] have 
been coded in Fortran and are used to validate and tune the algorithm.  The GN algorithm was 
written in the mid-1980s and has been used with good success by the few individuals who were 
aware of it.  The intent in publishing this work at this stage is to make the algorithm and the test 
problems available to a wider audience through open-access publication.  The algorithm is 
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described in the next section, and the Fortran for the algorithm and the test problems are also 
available as supplementary material accompanying this article. 
 
2. The GN Algorithm 
 
The algorithm minimizes f given by 
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in terms of the scaled residuals ri , from “the data” and fitting functions, for mi ...1= .  
 
Each residual is some function of the parameters px  for np ...1= .  In general, the residuals r 
can be represented as a Taylor expansion around some starting point r0 in parameter space,  
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In a sufficiently small neighborhood of x0, r can be well approximated as linear, depending 
linearly on the parameters with coefficients given by the Jacobian matrix 
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The fundamental quantity f is then given by 
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neglecting the second derivatives of the residuals, which is justified in a sufficiently small 
neighborhood of x0.  To simplify the notation, 
 

ppp sxx →− 0   , 
 
in terms of an iterative “step” s.   
 
Also, to simplify the algebraic manipulations, matrix notation will be used, where a capital letter 
denotes a matrix, for example 
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In matrix notation 
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and for a square matrix, 

 

 

11 )()( −− = TT AA

  

 
 
where AT denotes the transpose of matrix A, i.e., rows and columns exchanged.  This makes the 
sum of squares f , 
 

f = r + Js( )T r + Js( ) = rT r + sT JT r + rT Js + sT JT Js   , (1) 
 
where s and r are column vectors containing the elements sp and ri.  In Eq. (1) note that the 
matrix J is m (the number of data) rows high by n (the number of parameters) columns wide, s is 
a single column with n rows, and Js and r are single columns with m rows.  See Appendix B for 
an example.  In matrix multiplication, for example AB, the number of columns of A must be the 
same as the number of rows of B. The product has the number of rows of A and the number of 
columns of B. 
 

∑≡
k
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Our approach to Eq. (1) is to complete the square—a simple but powerful algebraic technique.  
For example the quadratic form cbxax ++2  can be rewritten as )4/())2/(( 22 abcabxa −++ , 
which shows immediately the minimum obtained for )2/( abx −= .  Similarly, one can verify 
that Eq. (1) can be rewritten as 
 
f = s + (JT J)−1JT r( )T

JT J s + (JT J)−1JT r( )+ rT I − J(JT J)−1JT( )r    , (2) 
 
where I is the mm×  identity matrix with all 1’s on the diagonal.  For the moment, we simply 
assume that the nn ×  “Hessian” matrix JJH T=  is nonsingular and can be inverted.  From 
Eq. (2), one sees immediately the step required to minimize f is given by 
 

rJHs T1−−=    .  
 
For a linear problem, the minimum is immediately achieved with this step. 
 
For a nonlinear problem, this step (Newton step) may be too ambitious.  You may not decrease f 
when you begin climbing the opposite side.  Notice from Eq. (1) that the derivative of f near the 
origin is given by 
 

( )p
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Therefore a step of the form 
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μμ
grJs T −≡−=

1  

 
with μ sufficiently large will be a step down the gradient (steepest descent) and will always 
decrease f, where we have introduced the notation rJg T≡ .  The disadvantage of this 
conservative (Gaussian) step is that it may take a very large number of iterations to reach the 
minimum, while the Newton step goes immediately to the minimum for a linear problem and for 
a well-behaved nonlinear problem gives quadratic convergence near the minimum (the error 
eventually decreasing like the square of some factor at each step.)   The Levenberg-Marquardt 
compromise solution[1,2] is a step of the form 
 

gDHs 12 )( −+−= μ        ,  (3) 
 
which becomes the Newton step for small μ and is a Gaussian step for large μ, where D2 is a 
positive diagonal scaling matrix.  This technique also takes care of possible singularity of H, 
because the matrix 2DH μ+ will always be invertible when the diagonal is augmented by some 
positive μ . The example of Appendix B may be helpful. 
 
To understand the Levenberg-Marquardt method, note that Eq. (3), for some 0>μ  is the 
solution of the constrained minimization of the quadratic form given by Eq. (2) subject to the 
constraint on step size  
 

( ) δ≤DsDs T     , 
  
which can be demonstrated by introducing μ  as a Lagrange multiplier in the constrained 
minimization of Eq. (2).   
 
Therefore, the solution of Eq. (3) represents the minimum of Eq. (2) within the “trust radius” δ . 
 
The notation connected with scaling is simplified by the transformation of variables 
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under which Eq. (3) becomes gIHs 1)( −+−= μ , where I is the identity matrix.  Transformed 
variables will be used subsequently. 
 
Scaling is important when there is a vast difference in the natural scale of different parameters.  
Many times this is not the case, for example, when the parameters represent the logs of physical 
parameters.  The log transformation is a good way to normalize the scale and to impose 
positivity on the physical parameter. The calculations given in this paper do not use scaling 
(iscale = 0), even though some of the problems have large differences in final parameter 
values.  For these problems we find that scaling is necessary only when using single precision. 
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The GN algorithm proceeds as follows. 
 
In one mode (NewtStepFirst = .true.), first try a full Newton step, with μ  just the 
minimum required to prevent singularity (minimum augmentation).  If the problem is linear, the 
minimum will have been obtained in this one step. 
 
If the function increases, go back and start over using a smaller step (the “Cauchy step”), but 
still in the Newton direction.  The Cauchy step is the step in the direction g that minimizes the 
quadratic given by Eq. (2).  One can show that the length of this step is given by 
 

( )
Hgg
ggs T

T

C

2/3

=    . 

 
It provides a natural step length, without requiring matrix inversion, as fallback when the 
Newton step does not decrease f.   
 
The more conservative mode (NewtStepFirst = .false.), which is used in the 
calculations given in this paper,  does not first try a Newton step but just begins with the Cauchy 
step.  The large Newton step can sometimes cause numerical problems where the function 
cannot be evaluated. 
 
After the first step, one has available an initial f0, a final f after taking the step, and the 
derivatives at the initial point. The trust radius is then revised using a quadratic fit based on 
these values as described in Appendix C. 
 
For example, consider the Rosenblock test problem (problem 1), which has m = n = 2.  The 
residuals are defined by 
 

r =
10 x2 − x1

2( )
1 − x1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    . (4) 

 
 
Figure 1 shows the steps to the minimum for two different starting points.  



 7

128

128

32
8
2

2

8
32

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

 minimum
 starting point

X 2

X1
 

Figure 1—steps taken to reach the minimum superimposed on a contour plot of the function f for 
test problem 1. The number of function evaluations required was 39 or 36 depending on the 

starting points.  

To provide contrast, Fig. 2 shows the steps to the minimum if there is only one residual defined 
as the square root of the sum of squares given by Eq. (4). 
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Figure 2—steps taken to get close to the minimum superimposed on a contour plot of the 
function f for test problem 1. In this case there is only one piece of data (m = 1) equal to the 

square root of the sums of squares for problem 1.  The number of function evaluations required 
was much larger than in Fig. 1.  

As shown in Fig. 2, if only the function f is available, the algorithm steps down the gradient of f 
going quickly down the steep sides to the bottom of the valley, which then is very gently 
sloping, and then follows the “stream bed” towards the minimum.  In contrast, the Newton step 
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is mostly at right angles to the steepest descent direction, and stays high until reaching the region 
of quadratic convergence at the end. 

3. The Test Problems 

The 36 test problems used come from a suite published in 1981 [9]. This collection has systems 
of nonlinear equations, nonlinear least squares, and unconstrained minimization. The GN 
program can treat all of these, overdetermined (m>n) and underdetermined (m<n), in the same 
manner as nonlinear equations (m=n). Very large m or n can lead to ill-conditioned problems. 
Testing serves several purposes: it is a general check on the coding, it checks the efficiency of 
the algorithm, and it is a source of confidence that the algorithm will give a correct answer on 
new problems. Even a minor change in the coding needs to be tested.  

In some cases, the Hessian without augmentation of the diagonal is singular. One cannot expect 
to correctly solve the Hessian matrix’s inherent inversion when the ratio of eigenvalues before 
augmentation exceeds the machine precision or the accuracy of the data and equations.  The 
inverse Hessian is the variance-covariance matrix in a linear uncertainty analysis.  However, 
except for linear problems, we find this linear analysis to not be a reliable indication of 
parameter uncertainties, even if the all second-order derivative terms (found numerically using  
GN itself) are included in the Hessian.  We find it necessary to do a Monte Carlo analysis where 
some large number (say 100) of alternate realizations of the data are generated and the nonlinear 
fits repeated (the residual is imagined to represent fit-data divided by the standard deviation of 
the data.) 
 
The GN method uses a fair amount of storage for large problems and may have numeric 
problems when summing large arrays. Normally double precision is sufficient to handle the 
latter problem. Quad precision has been tested but produces almost identical results for these 
problems.   
 
One can use either parameter change (stptol) or function decrease (abstol and reltol) 
as a stopping criterion. Use abstol and reltol to obtain a specific accuracy in the function 
values or stptol to get the positions or other parameters to the accuracy needed. Use stptol 
= 1e-4 for about 3-digit accuracy. Use of stptol is appropriate for say placing objects, 
defining field strengths, etc. Use abstol and reltol to set what the sum-of-squares of 
residuals accuracy is required. Each is limited to the attainable computational accuracy.  GN will 
stop on the first criterion met. To stop on abstol the function must be less than abstol.  To 
stop on reltol the change of the function must be less than the maximum of reltol times 
the function and abstol.  
 
Table I is a sample run using a Windows XP system, Intel Q9650 processor, and MinGW G95 
Fortran (www.mingw.org) compiler with absolute function accuracy abstol= 1 × 10-11, 
relative function accuracy reltol= 1 × 10-7,  position accuracy xacc = 1 × 10-4 , and 
derivative step size = 1 × 10-4. Listed are the problem number, number of residuals (m), number 
of parameters (n), iteration count, number of function evaluations, the final value obtained for 
the sum of squares, and the function’s name from Moré et al. An iteration involves calculating 
the function and possibly all derivatives.  
 
The final parameter values were checked against the correct values.  Because of the possibility 
of multiple solutions, the starting points were changed from the Moré values in several cases in 
order to avoid instability toward secondary solutions.  Increasing abstol and reltol results 
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in fewer evaluations.  It was found that abstol and reltol could not be further increased 
over the values stated in the previous paragraph and still preserve an error tolerance of 0.005 for 
all parameters and all test problems.  Decreasing these parameters, in particular reltol, 
increased the number of evaluations, in some cases markedly–not for these test problems but for 
their modified versions used for the Monte Carlo uncertainty calculations.  This dramatic 
increase in the number of evaluations for small reltol was not eliminated by going to quad 
precision, so it is not just a matter of numerical noise, which could be prevented by imposing a 
lower limit on reltol related to the machine precision. The conclusion from all this is that one 
must choose the tolerances, in particular reltol, with some care. 
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Table I—Performance of the GN algorithm for the Moré test problems.  The total number of 
function evaluations is 2116 for the 36 problems.  

 
 

prob m n iter evals value Moré function name 
1 2 2 22 36 0 0 Rosenbrock 
2 2 2 39 61 48.98425 48.9842 Freudenstein & Roth 
3 2 2 25 41 8.54E-17 0 Powell badly scaled 
4 3 2 27 45 1.41E-22 0 Brown badly scaled 
5 3 2 14 24 3.33E-16 0 Beale 

6 10 2 24 38 124.3622 124.362 Jennrich & Sampson 

7 3 3 16 31 7.48E-20 0 Helical valley 

8 15 3 9 18 8.21E-03 8.21E-03 Bard 

9 15 3 12 24 1.13E-08 1.13E-08 Gaussian 

10 16 3 28 52 87.94586 87.9458 Meyer 

11 99 3 34 58 2.20E-16 0 Gulf R & D 

12 9 3 8 14 1.47E-12 0 Box 3D 

13 4 4 18 34 4.57E-12 0 Powell singular 

14 6 4 82 144 1.81E-16 0 Wood 
15 11 4 20 44 3.08E-04 3.08E-04 Kowalik & Osborne 
16 20 4 60 116 85822.24 85822.2 Brown & Dennis 
17 33 5 19 39 5.46E-05 5.46E-05 Osborne 1 

18 13 6 43 85 1.17E-15 5.66E-30 Biggs EXP6 

19 65 11 25 69 4.01E-02 4.01E-02 Osborne 2 

20 31 9 22 49 1.40E-06 1.40E-06 Watson 
21 12 12 31 67 3.71E-28 0 Extended Rosenbrock 
22 12 12 17 41 4.82E-12 0 Extended Powell 
23 5 4 30 54 2.25E-05 2.25E-05 Penalty I 

24 8 4 32 60 9.38E-06 9.38E-06 Penalty II 

25 11 9 24 51 5.62E-15 0 Variably dimensioned 

26 9 9 23 50 4.41E-13 0 Trigonometric 
27 9 9 3 12 1.23E-27 0 Brown almost linear 

28 9 9 4 13 3.39E-15 0 Discrete boundary value 

29 9 9 4 13 1.15E-13 0 Discrete integral equ. 

30 9 9 9 27 1.30E-18 0 Broyden tridiagonal 

31 9 9 13 31 2.41E-12 0 Broyden banded 
32 12 9 5 23 3 m-n = 3 Linear full rank 

33 12 9 5 23 2.64 m(m-1)/ (4m+2) = 2.64 Linear rank 1 

34 12 9 5 23 4.142857 (m2+3m-6)/ (4m-6) = 4.14286 Linear rank 1 with zeros 

35 9 12 6 30 2.10E-16 NA Chebyquad 

36 3 2 378 574 1.232 NA Modified Beale (prob 5) 
 

Problem 35 is Moré’s problem changed into an under-constrained example with more 
parameters (12) than data (9).  Problem 36 is altered version of the Beale problem (problem 5) 
that required many consecutive steps, each causing a very small decrease in the sum of squares.  
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The GN algorithm has an addition based on this phenomenon, where the trust radius is increased 
by a factor based on the number of consecutive steps with function decreases.  

 

Table II—Performance of the GN algorithm for the Moré test problems in terms of total number 
of function evaluations on two platforms: Windows XP with Intel Q 9650 processor using 
MinGW G95 Fortran (www.mingw.org) and MacBook Intel 64-bit OS 10.6.8 using GNU 

Fortran 4.6.3 (gcc.gnu.org). Three different parameter starting values are used: near(0.001) the 
answer, the Moré values, and the Moré values slightly perturbed (0.04).  All final parameter 

values were within a tolerance of 0.005 from the correct values.   

  
Compiler start #evals 

G95 near answer 746 
G95 Moré  2114 
G95 perturbed Moré 2579 
GNU near answer 746 
GNU Moré  2118 
GNU perturbed Moré 2596 

 

4. Comparison of GN to other minimization algorithms 

There are several types of minimization algorithms.  Ranked in terms of generality these are: 

1. Those requiring only a function to be minimized that may not be differentiable. 
2. Those requiring a differentiable function to be minimized. 
3. Those minimizing the sum of squares of differentiable functions. 

When the problem permits, we expect that type-3 algorithms (like GN) would work best in 
terms of effectiveness (finding the solution) and efficiency (using a small number of function 
evaluations). For an open-source algorithm that is meant to be used, understood, and possibly 
modified by others, small program size is also important.  Comparisons with GN are 
summarized in Table III. 

Table III—Comparisons of numbers of function evaluations to find the minimum and executable 
lines of code for three algorithms of different types versus GN.  

 
type algorithm #lines #probs #evals #evalsGN ratio 

1 SUBPLEX 739 28 4480845 4637 966.3 
2 MINUIT 8000 28 54890 4571 12.0 
3 LMDIF 555 30 13896 4485 3.1 
3 GN 323 37 5439 5439 1 

 

These comparisons used the G95 compiler on a Windows XP system. 
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The type-1 algorithm chosen was the SUBPLEX algorithm, by Tom Rowan, with 739 
executable lines of Fortran, which uses the Simplex method (DMOZ website, see references).  
SUBFLEX was easy to use and required only the tolerance for ending, which we took to be our 
reltol = 3 × 10-7 , and the default choice (scale(1)=-1) for parameter scaling. When 
minimizing the sum of squares from our 36 test problems for the 3 starting points, SUBPLEX 
was out of tolerance (f tolerance = 5 × 10-5, x tolerance = 0.01) from the expected answer for 
problems (starting points: 1 = near answer, 2 = Moré, 3 = perturbed Moré):  3 (2), 17(1,3), 
20(2,3), 24(2), 26(2,3), 31(2,3), and 35(3).  The SUBPLEX solutions, when used as starting 
points for GN, were within tolerance of the GN final solution for 5/11 of these cases and were 
improved by GN for 7/11 cases at the expense of 365 further function evaluations.  For the 28 
test problems that returned the expected solutions within tolerance for all 3 starting points, the 
number of function evaluations required was 4,480,845 compared to 4637 using GN. 
 
The type-2 algorithm used in the comparison is the steepest descent algorithm MIGRAD from 
the MINUIT package developed at CERN by Fred James (MINUIT website, see references).  
MINUIT is a large complex program with almost 8000 executable lines of code.  Within 
MINUIT we chose the steepest descent algorithm MIGRAD (“This is the best minimizer for 
nearly all functions” according to the MINUIT documentation) where the function to be 
minimized was the sum of squares for each of our 36 test problems.  Setting the tolerance again 
to be our reltol = 3 × 10-7 , we found that MINUIT was out of tolerance from the expected 
answer for problems (starting points):  3 (1,2,3), 5(3), 17(1), 18(2,3), 24(2,3), 26(2,3), 31(2,3), 
and 35(2).  The MINUIT solutions, when used as starting points for GN, were within tolerance 
of the GN final solutions for 6/14 of these cases and were improved by GN for 8/14 cases at the 
expense of 754 further function evaluations.  For the 28 test problems that returned the expected 
solutions within tolerance for all 3 starting points, the number of function evaluations required 
was 54,890 compared to 4571 using GN. 
 
The most similar algorithm to GN that we could find in the open-source literature was LMDIF, 
which is part of MINPACK (www.netlib.org) written by Garbow, Hillstrom, and Moré.  Using 
LMDIF, which has 555 executable lines of Fortran, on the same 36 test problems was very easy 
and only one parameter needed to be specified, the tolerance for ending, which we took to be our 
reltol = 3 × 10-7 .  We found LMDIF could not be used on problem 35, where the number of 
parameters exceeded the number of data, as this produced an input error.  LMDIF was out of 
tolerance from the expected answer for problems (starting points):  5(3), 14(2,3), 16(2,3), 
18(2,3), and 26(2,3). The LMDIF solutions, when used as starting points for GN, were within 
tolerance of the GN final solutions for 6/9 of these cases and were improved by GN for 3/9 cases 
at the expense of 55 further function evaluations.  For the 30 test problems that returned the 
expected solutions within tolerance for all 3 starting points, the number of function evaluations 
required was 13,896 compared to 4,485 using GN.  The problem-by-problem comparison for 
just the normal starting point is shown in Table IV.  Note that LMDIF has fewer evaluations 
than GN only on problem 2 and that GN requires less than 70 evaluations for all problems 
except the last. 

Table IV—Number of function evaluations required for LMDIF versus GN, with the normal 
starting point for the subset of 30 problems where LMDIF gave the expected result.  

 
Problem LMDIF GN 

1 54 36 
2 29 61 
3 50 41 
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4 46 45 
6 42 38 
7 35 31 
8 21 18 
9 34 24 

10 474 52 
11 77 58 
12 25 14 
13 1001 34 
15 67 44 
17 93 39 
19 148 69 
20 51 49 
21 214 67 
22 2601 41 
23 119 54 
24 591 60 
25 101 51 
27 21 12 
28 41 13 
29 41 13 
30 51 27 
31 83 31 
32 21 23 
33 22 23 
34 21 23 
36 600 574 

totals 6774 1665 

 

 

5. Discussion and Conclusion 

The GN algorithm is less general than other minimization algorithms in that it minimizes the 
sum of squares of differentiable functions rather than a general function.  However for problems 
of this type, and in particular for our 36 test problems, in comparison to other open source 
algorithms we find that it is superior in terms of 1) effectiveness (ability to find the solution), 2) 
efficiency (number of function evaluations required for convergence), and 3) complexity 
(number of executable lines of code).   

This method was developed as part of the experimental magnetic-fusion-energy program at Los 
Alamos and has been in use for 28 years with good success. We hope it will now be of use to a 
wider audience. Note that it can be efficiently used for linear equations; it takes only one 
additional function evaluation to confirm the solution. 

Some “tricks” and insights discovered include: 

1. Computing the machine numerical precision by compiler function. 
2. By augmenting the diagonal of the Hessian with a small number related to machine 

precision we are assured a solution for the Newton step, even when the Hessian itself 
is singular. 
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3. Rank-1 updates of the Jacobian, without resorting to a full Jacobian recalculation. 
4. Limiting the range of trust radius change. 
5. Imposing a minimum on the Cauchy step--important when starting near the solution. 
6. Increasing the trust radius based on having a long run of function decreases. 
7. Automatic updating of the scaling vector by averaging with the current parameter 

absolute value. 
8. The importance of tuning the GN algorithm parameters based on the performance for 

test problems. 
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Appendix A—Solution of 0)( =Φ μ  
 
Let )(μΦ be the magnitude of the “hook” step ( ) gIHx 1)( −+−= μμ minus some specified 
length δ.  In other words, 0)( =Φ μ  expresses the condition that the magnitude of the step is the 
trust radius δ.  In order to solve for the step x with a given radius δ, we need to first solve the 
equation 
 

0)( =Φ μ   , 
 
for μ, and then obtain the step from ( ) gIHx 1)( −+−= μμ .  
 
How do we solve 0)( =Φ μ ?  Motivated by the one-dimensional case and following Dennis and 
Schnabel, a local model is used for )(μΦ ,  
 

δ
μβ

αμ −
+

≅Φ )(   , (A.1) 

 
for some scalar parameters α and β.  Assume a current value μc of μ. The current values of 
αc and βc are obtained from the two equations 
 

( )2)(

)(

cc

c
c

c
cc

c
c

μβ
α

μ

δ
μβ

α
μ

+
−=Φ′

−
+

=Φ

   ,  

 
which when solved give 
 

( )

( )
)(

)(
)(

)( 2

c

cc
cc

c

cc
c

μ
δμ

μβ

μ
δμ

α

Φ′
+Φ

−−=

Φ′
+Φ

−=
   . (A.2) 

 
The iteration of μ (“hook search”) based on the local model is  
 

c
c

c β
δ
α

μ −=+    , 

 
obtained by solving Eq. (A.1) for μ.  By substituting from Eq. (A.2), this gives 
 

)(
)()(

c

c

c

cc
c μ

μ
δ

δμ
μμ

Φ′
Φ+Φ

−=+    . (A.3) 

 
The derivative with respect to μ  of the column matrix x(μ)  defined by 

( ) gIHx 1)( −+= μμ  can be obtained by taking the derivative of the equation 
( ) gxIH =+ )(μμ with respect to μ and then solving for )(μx .  One obtains 
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( ) )()( 1 μμμ
μ

xIHx
d
dx −+−=′≡    . 

 
Therefore, from 
 

δμμμ −≡Φ )()()( xx T , (A.4)  
 
one finds that  
 

)()(
)()()(

)()(
)()()(

1

μμ

μμμ

μμ

μμμ
xx

xIHx
xx

xx
T

T

T

T −+
−=

′
=Φ′  . (A.5) 

Equations (A.3), (A.4), and (A.5) allow one to iteratively solve for μ, given δ. 

  

Appendix B—Example for the case m=1, n=2 

 
In this case there are two parameters and one residual r.  The basic equations are: 
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

==

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=

=

y
rr
x
rr

rJg

y
r

y
r

x
r

y
r

x
r

x
r

JJH

y
r

x
rJ

rf

T

T
2

2

2

   . 

 
The equation for step s is 
 
( ) gsIH −=+ μ   , 
 
or 
 

∂r
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+ μ
∂r
∂x

∂r
∂y

∂r
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∂y

∂r
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+ μ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

s = −g   . 
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The solution is 
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Substituting for g, we get 
 

r

y
r

x
r

y
r
x
r

s

μ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

−=
22

   . 

 
Thus there is a well-defined step directed down the gradient in the limit 0→μ , even though the 
matrix H is singular.   
 
One can verify that the same step is obtained if m is increased to any number by adding more 
residuals having r = 0. 
 
 
Appendix C—Updating the trust radius  
 
Consider movement in the direction s, ||||/ ssx λ= and the value of )(λf  as function of the λ . 
From the definition of f, for x small 
 

||||
2)0(

2)(

s
sgf

d
dxg

d
dff

T

T

=′

==′
λλ

λ
  . 

 
The distance λ  starts out at 0, where f takes the value 0f , and ends with the value 

λ = || s || = sT s  at the final point of the step, where )(λf takes value f .  By fitting a quadratic 
2

0)( λλλ baff ++≅ , the minimum occurs at 
 

b
a
2

−=∗λ       , 

 
where 



 18 

 

2
0

||||
||||

)0(

s
saff

b

fa
−−

=

′=
   ,  

 
so that  
 

r
s

b
a

−
=−=∗ 1

||||
2
1

2
λ   (C.1) 

with 
 

sg
ff

sf
ff

r T2||||)0(
00

−
−

=
′−

−
=    . 

 
The quantity r is bounded above by 1 (when the curvature is negligible) and unbounded below 
(when 0ff > ).  With the revised trust radius given by Eq. (C.1), which can be greater than the 
last step if 2/1>r , a new value of μ and a new step are calculated as described in Appendix 
A. 
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