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1 Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

1.1 Core X Protocol Support for Keyboards

The core X protocol specifies the ways that the Shift, Control, and Lock modifiers
and the modifiers bound to the Mode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

• Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with ISO9995, or a host of other national and international standards.

• A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

• Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

• Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

• Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

• The lack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to a user to resort to a mish-mash of prior knowledge and heuristics.

1.2 Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

1.3 Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.
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Figure 1.1 shows the overall structure of the Xkb extension:

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the
server maintains a keyboard description that includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map

The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

Xkb Extension

Core XlibXkb

(Xkb*
Xkb Modifications

functions

X Server

Xkb Server Extension

Server Database of
Keyboard Components

Client Map Server Map Compatibility Map

Controls Indicator Map Names Geometry

Keyboard

 to Xlib
Additions

functions)
 to Core Xlib

Core Xlib

Xkb-capable
User

Application

Xkb-aware
User

Application

Xkb-unaware
User

Application
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Indicators

The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map

The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

1.3.1 Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

1.3.2 Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
group XkbKB_RadioGroup behavior and the radio group index.

1.4 Client Types

This specification differentiates between three different classes of client applications:

• Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

• Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with a version of Xlib
that includes Xkb and indirectly benefit from some of Xkb’s features.
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• Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

1.5 Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

1.6 Additional Protocol Errors

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. See section 2.6 for a discussion of the BadKeyboard protocol error.

1.7 Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
more comprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.1

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

1.7.1 Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of this test, BadAc-
cess and BadMatch (due to incompatible versions) protocol errors should normally not
be generated.

1.  X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

Table 1.1  Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL
Bool False
Status BadAccess
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Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.



November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2   Initialization and General Programming

2 Initialization and General Programming Information

2.1 Extension Header Files

The following include files are part of the Xkb standard:

• <X11/XKBlib.h>
XKBlib.h is the main header file for Xkb; it declares constants, types, and functions.

• <X11/extensions/XKBstr.h>
XKBstr.h declares types and constants for Xkb. It is included automatically from
<X11/XKBlib.h>; you should never need to reference it directly in your application
code.

• <X11/extensions/XKB.h>
XKB.h defines constants for Xkb. It is included automatically from <X11/XKB-
str.h>; you should never need to reference it directly in your application code.

• <X11/extensions/XKBgeom.h>
XKBgeom.h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

2.2 Extension Name

The name of the Xkb extension is given in <X11/extensions/Xkb.h>:

#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calling XInitExtension and passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should not call XInitExtension directly.

2.3 Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, call XkbLibraryVersion.

Bool XkbLibraryVersion(lib_major_in_out, lib_minor_in_out)
int * lib_major_in_out; /* specifies and returns the major Xkb library version. */
int * lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic value XkbMajorVersion in lib_major_in_out and XkbMinorVer-
sion in lib_minor_in_out. These arguments represent the version of the library used at
compile time. The XkbLibraryVersion function backfills the major and minor version
numbers of the library used at run time in lib_major_in_out and lib_minor_in_out. If the
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versions of the compile time and run time libraries are compatible, XkbLibraryVersion
returns True, otherwise, it returns False.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. Use XkbQueryExtension to do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtension to check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism functions (XQueryExtension and XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must call XkbQueryExtension or XkbOpenDisplay before using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions are: XkbIgnoreExtension, XkbLibraryVersion, and a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cause BadAccess protocol errors.

XkbQueryExtension both determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_out)

Display * dpy; /* connection to the X server */
int * opcode_rtrn; /* backfilled with the major extension opcode */
int * event_rtrn; /* backfilled with the extension base event code */
int * error_rtrn; /* backfilled with the extension base error code */
int * major_in_out; /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtension function determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is present, XkbQue-
ryExtension returns True; otherwise, it returns False.

If a compatible version of Xkb is present, XkbQueryExtension initializes the extension. It
backfills the major opcode for the keyboard extension in opcode_rtrn, the base event code
in event_rtrn, the base error code in error_rtrn, and the major and minor version numbers
of the extension in major_in_out and minor_in_out. The major opcode is reported in the
req_major fields of some Xkb events. For a discussion of the base event code, see section
4.1.
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As a convenience, you can use the function XkbOpenDisplay to perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)

char *display_name; /* hardware display name, which determines the display and
communications domain to be used */

int * event_rtrn; /* backfilled with the extension base event code */
int * error_rtrn; /* backfilled with the extension base error code */
int * major_in_out; /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib minor version in, server minor version out */
int * reason_rtrn; /* backfilled with a status code */

XkbOpenDisplay is a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon return reason_rtrn contains a status value
indicating success or the type of failure. If major_in_out and minor_in_out are not NULL,
XkbOpenDisplay first calls XkbLibraryVersion to determine whether the client library is
compatible, passing it the values pointed to by major_in_out and minor_in_out. If the
library is incompatible, XkbOpenDisplay backfills major_in_out and minor_in_out with
the major and minor extension versions of the library being used and returns NULL. If the
library is compatible, XkbOpenDisplay next calls XOpenDisplay with the display_name.
If this fails, the function returns NULL. If successful, XkbOpenDisplay calls XkbQueryEx-
tension and backfills the major and minor Xkb server extension version numbers in
major_in_out and minor_in_out. If the server extension version is not compatible with the
library extension version or if the server extension is not present, XkbOpenDisplay closes
the display and returns NULL. When successful, the function returns the display connec-
tion.

The possible values for reason_rtrn are:

• XkbOD_BadLibraryVersion indicates XkbLibraryVersion returned False.
• XkbOD_ConnectionRefused indicates the display could not be opened.
• XkbOD_BadServerVersion indicates the library and the server have incompatible

extension versions.
• XkbOD_NonXkbServer indicates the extension is not present in the X server.
• XkbOD_Success indicates that the function succeeded.

2.5 Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the preXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkbIgnoreExtension to prevent core X library keyboard functions from using the X
Keyboard Extension. You must call XkbIgnoreExtension before you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkbIgnoreExtension(ignore)
Bool ignore; /* True means ignore the extension */
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XkbIgnoreExtension tells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignore is True, the library does not initial-
ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore is False, the library treats subsequent calls to XOpenDisplay normally
and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabled. XkbIgnoreExtension returns False if it was unable to apply
the ignore request.

2.6 Protocol Errors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this document as a BadXxx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. This error code will be reported as the error_rtrn when XkbQueryExtension is called.
When a BadKeyboard error is reported in an XErrorEvent, additional information is
reported in the resource_id field. The most significant byte of the resource_id is a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPtr is also passed as an argument, the Display* argument must match the dpy
field of the XkbDescRec pointed to by the XkbDescPtr argument, or else the dpy field
of the XkbDescRec must be NULL. If they don’t match or the dpy field is not NULL, a

Table 2.1  Xkb Protocol Errors

Error Cause
BadAccess The Xkb extension has not been properly initialized
BadKeyboard The device specified was not a valid core or input extension device
BadImplementation Invalid reply from server
BadAlloc Unable to allocate storage
BadMatch A compatible version of Xkb was not available in the server or an argument

has correct type and range, but is otherwise invalid
BadValue An argument is out of range
BadAtom A name is neither a valid Atom or None
BadDevice Device, Feedback Class, or Feedback ID invalid

Table 2.2  BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice 0xff device not found device ID
XkbErr_BadClass 0xfe device found, but it is of the wrong class class ID
XkbErr_BadId 0xfd device found, class ok, but device does not

contain a feedback with the indicated ID
feedback ID
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BadMatch error is returned (either in the return value or a backfilled Status variable).
Upon successful return, the dpy field of the XkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
quently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display * dpy) and a device identifier (unsigned int device_spec). In some cases, the
device identifier is implicit and is taken as the device_spec field of an XkbDescRec struc-
ture passed as an argument.

The device identifier can specify any X input extension device with a KeyClass compo-
nent, or it can specify the constant, XkbUseCoreKbd. The use of XkbUseCoreKbd
allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument and an XkbDescPtr is also
passed as an argument, if either the argument or the XkbDescRec device_spec field is
XkbUseCoreKbd, and if the function returns successfully, the XkbDescPtr device_spec
field will have been converted from XkbUseCoreKbd to a real Xkb device ID. If the func-
tion does not complete successfully, the device_spec field remains unchanged. Subse-
quently, the device id argument must match the device_spec field of the XkbDescPtr
argument. If they don’t match, a BadMatch error is returned (either in the return value or
a backfilled Status variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when you use XkbUseCoreKbd,
XkbUseCoreKbd will work and the identifier returned by the server will refer to the core
keyboard device.
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3 Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

3.1 Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

3.2 Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s an XkbResizeKeyType function.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed by sz_, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixed by num_, specifies
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the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

• Call the allocator function with some arbitrary size, as a hint.
• For those arrays that have an Xkb...Add... function, call it each time you want to add

new data to the array. The function expands the array if necessary.

For example, call:

XkbAllocGeomShapes(geom,4)

to say “I’ll need space for four new shapes in this geometry.” This makes sure that
sz_shapes - num_shapes >= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checks the sz_ and num_ fields of the array, resizes the
array if necessary, adds the entry to the array, and then updates the num_ field.

3.3 Making Changes to the Server’s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate special changes data structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

3.4 Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.
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When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the form XkbNote{Component}Changes, where Component is the name of a
major Xkb component such as Map or Names. When you want to copy these changes from
the server into a local copy of the keyboard description, use the corresponding Xkb-
Get{Component}Changes function, passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directly use malloc to allocate Xkb data structures,
you should not free Xkb data structures or components directly using free or Xfree. Xkb
provides functions to free the various data structures and their components. Always use
the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed by free or Xfree.
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4 Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the keyboard.1

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling either XkbSelect-
Events or XkbSelectEventDetails. XkbSelectEvents requests Xkb events by their event type
and causes them to be reported to your client application under all circumstances. You can
specify a finer granularity for event reporting by using XkbSelectEventDetails; in this case
events are reported only when the specific detail conditions you specify have been met.

4.1 Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type
is defined by two fields in the X event data structure. One is the type field, containing the
base event code. This base event code is a value the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event code in
the type field identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtension or XkbOpenDisplay. The second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the header file <X11/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined in Xkb.h. Each event is described in more detail in the section referenced for that
event.

1. The one exception to this rule is the XkbExtensionDeviceNotify event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

Table 4.1  Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboardNotify Keyboard geometry; keycode range change 19 187
XkbMapNotify Keyboard mapping change 14.4 122
XkbStateNotify Keyboard state change 5.4 25
XkbControlsNotify Keyboard controls state change 10.11 79
XkbIndicatorStateNotify Keyboard indicators state change 8.5 45
XkbIndicatorMapNotify Keyboard indicators map change 8.5 45
XkbNamesNotify Keyboard name change 18.5 185
XkbCompatMapNotify Keyboard compatibility map change 17.5 178
XkbBellNotify Keyboard bell generated 9.4 52
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4.2 Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described in the XkbAnyEvent structure:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */

} XkbAnyEvent;

For any Xkb event, the type field is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension events. The serial, send_event, and display
fields are as described for all X11 events. The time field is set to the time when the event
was generated and is expressed in milliseconds. The xkb_type field contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. The device field contains the keyboard device identifier associated with the
event. This is never XkbUseCoreKbd, even if the request that generated the event speci-
fied a device of XkbUseCoreKbd. If the request that generated the event specified
XkbUseCoreKbd, device contains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extension device, device
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

4.3 Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

XkbActionMessage Keyboard action message 16.1.11 155
XkbAccessXNotify AccessX state change 10.6.4 65
XkbExtensionDeviceNotifyExtension device change 21.6 207

Table 4.1  Xkb Event Types

Event Type Conditions Generating Event Section Page
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You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb events. XkbSelect-
Events allows you to select or deselect delivery of more than one Xkb event type at once.
Events selected using XkbSelectEvents are delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, use XkbSelectEventDetails. XkbSelectEventDetails only
allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, use XkbSelectEvents.

Bool XkbSelectEvents(display, device_spec, bits_to_change, values_for_bits)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned long int bits_to_change; /* determines events to be selected / deselected */
unsigned long int values_for_bits; /* 1=>select, 0->deselect; for events in bits_to_change */

This request changes the Xkb event selection mask for the keyboard specified by
device_spec.

Each Xkb event that can be selected is represented by a bit in the bits_to_change and
values_for_bits masks. Only the event selection bits specified by the bits_to_change
parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in the bits_to_change parameter and set the corre-
sponding bit in the values_for_bits parameter. To turn off event selection for an event, set
the bit for the event in the bits_to_change parameter and do not set the corresponding bit
in the values_for_bits parameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in the bits_to_change parameter, but the corresponding bit is set in the
values_for_bits parameter, a BadMatch protocol error results. If an undefined bit is set in
either the bits_to_change or the values_for_bits parameter, a BadValue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another call to XkbSe-
lectEvents.

XkbSelectEvents returns False if the Xkb extension has not been initilialized and True
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client, use XkbSelectEventDetails. This allows you
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to exercise a finer granularity of control over delivery of Xkb events with XkbSelect-
Events.

Bool XkbSelectEventDetails(display, device_spec, event_type, bits_to_change, values_for_bits)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int event_type; /* Xkb event type of interest */
unsigned long int bits_to_change; /* event selection details */
unsigned long int values_for_bits; /* values for bits selected by bits_to_change */

While XkbSelectEvents allows multiple events to be selected, XkbSelectEventDetails
changes the selection criteria for a single type of Xkb event. The interpretation of the
bits_to_change and values_for_bits masks depends on the event type in question.

XkbSelectEventDetails changes the Xkb event selection mask for the keyboard specified
by device_spec and the Xkb event specified by event_type. To turn on event selection for
an event detail, set the bit for the detail in the bits_to_change parameter and set the corre-
sponding bit in the values_for_bits parameter. To turn off event detail selection for a
detail, set the bit for the detail in the bits_to_change parameter and do not set the corre-
sponding bit in the values_for_bits parameter.

If an invalid event type is specified, a BadValue protocol error results. If a bit is not set in
the bits_to_change parameter, but the corresponding bit is set in the values_for_bits
parameter, a BadMatch protocol error results. If an undefined bit is set in either the
bits_to_change or the values_for_bits parameter, a BadValue protocol error results.

For each type of Xkb event, the legal event details that you can specify in the XkbSelect-
EventDetails request are listed in the chapters that describe each event in detail.

4.3.1 Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call to XkbSelectEvents or XkbSelectEventDetails. Specify the event
types in which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified with the XkbSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2  XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboardNotifyMask (1L<<0) Keyboard geometry change
XkbMapNotifyMask (1L<<1) Keyboard mapping change
XkbStateNotifyMask (1L<<2) Keyboard state change
XkbControlsNotifyMask (1L<<3) Keyboard control change
XkbIndicatorStateNotifyMask (1L<<4) Keyboard indicator state change
XkbIndicatorMapNotifyMask (1L<<5) Keyboard indicator map change
XkbNamesNotifyMask (1L<<6) Keyboard name change
XkbCompatMapNotifyMask (1L<<7) Keyboard compat map change
XkbBellNotifyMask (1L<<8) Bell
XkbActionMessageMask (1L<<9) Action message
XkbAccessXNotifyMask (1L<<10) AccessX features
XkbExtensionDeviceNotifyMask (1L<<11) Extension device
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4.4 Unified Xkb Event Type

The XkbEvent structure is a union of the individual structures declared for each Xkb
event type and for the core protocol XEvent type. Given an XkbEvent structure, you may
use the type field to determine if the event is an Xkb event (type equals the Xkb base event
code; see section 2.4). If the event is an Xkb event, you may then use the any.xkb_type
field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {
int type;
XkbAnyEvent any;
XkbStateNotifyEvent state;
XkbMapNotifyEvent map;
XkbControlsNotifyEvent ctrls;
XkbIndicatorNotifyEvent indicators;
XkbBellNotifyEvent bell;
XkbAccessXNotifyEvent accessx;
XkbNamesNotifyEvent names;
XkbCompatMapNotifyEvent compat;
XkbActionMessageEvent message;
XkbExtensionDeviceNotifyEvent device;
XkbNewKeyboardNotifyEvent new_kbd;
XEvent core;

} XkbEvent;

This unified Xkb event type includes a normal XEvent as used by the core protocol, so it
is straightforward for applications that use Xkb events to call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare a variable of type XkbEvent and call:

XNextEvent(dpy,&xkbev.core);

XkbAllEventsMask (0xFFF) All Xkb events

Table 4.2  XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
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5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Figure 5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

• The locked group and locked modifiers
• The latched group and latched modifiers
• The base group and base modifiers
• The effective group and effective modifiers
• The state of the core pointer buttons
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The modifiers are Shift, Lock, Control, and Mod1-Mod5, as defined by the core proto-
col. A modifier can be thought of as a toggle that is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support for keysym groups, as defined by ISO9995:

Group A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

The pointer buttons are Button1 - Button5, as defined by the core protocol.

The base group and base modifiers represent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.1

The effective modifiers are the bitwise union of the locked, latched, and the base modifiers.

The effective group is the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<= n <= 4
0 <= any of locked, latched, or base group < n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applications will actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1.  Keys may be logically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.
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1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings of the groups_wrap field of the XkbCon-
trolsRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event only is determined using the group_info field of the key symbol mapping
(XkbSymMapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols that the key can generate when it is pressed. The set
of all possible keysyms for a keyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When a key is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits 0 - 14 of
the state field of events that report modifier and button state. Such a client is said to be
Xkb-capable. A client that does explicitly call Xkb functions is an Xkb-aware client. The
Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

• lookup state: lookup group and lookup modifiers
• grab state: grab group and grab modifiers

The lookup modifiers and lookup group are represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. For KeyPress and KeyRelease events, the lookup modifiers are
computed as:

((base | latched | locked) & ~server_internal_modifiers)

Otherwise the lookup modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use the lookup state — the lookup group and the lookup modifiers.

The grab state is the state used when matching events to passive grabs. If the event acti-
vates a grab, the grab modifiers and grab group are represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’s IgnoreGroupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extension (Xkb-unaware clients):
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• The compatibility modifier state
• The compatibility lookup modifier state
• The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

5.2 Changing the Keyboard State

5.2.1 Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the parameter
affect. It is a bitwise inclusive OR of the legal modifier masks:

To lock and unlock any of the eight real keyboard modifiers, use XkbLockModifiers:

Bool XkbLockModifiers(display, device_spec, affect, values)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int affect; /* mask of real modifiers whose lock state is to change */
unsigned int values; /* 1 => lock, 0 => unlock; only for modifiers selected by affect */

XkbLockModifiers sends a request to the server to lock the real modifiers selected by both
affect and values and to unlock the real modifiers selected by affect but not selected by val-
ues. XkbLockModifiers does not wait for a reply from the server. It returns True if the
request was sent, and False otherwise.

To latch and unlatch any of the eight real keyboard modifiers, use XkbLatchModifiers:

Bool XkbLatchModifiers(display, device_spec, affect, values)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int affect; /* mask of modifiers whose latch state is to change */
unsigned int values; /* 1 => latch, 0 => unlatch; only for mods selected by affect */

Table 5.1  Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask
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XkbLatchModifiers sends a request to the server to latch the real modifiers selected by both
affect and values and to unlatch the real modifiers selected by affect but not selected by
values. XkbLatchModifiers does not wait for a reply from the server. It returns True if the
request was sent, and False otherwise.

5.2.2 Changing Groups

Reference the keysym group indices with these symbolic constants:

To lock the keysym group, use XkbLockGroup.

Bool XkbLockGroup(display, device_spec, group)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int group; /* index of the keysym group to lock */

XkbLockGroup sends a request to the server to lock the specified group and does not wait
for a reply. It returns True if the request was sent and False otherwise.

To latch the keysym group, use XkbLatchGroup.

Bool XkbLatchGroup(display, device_spec, group)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int group; /* index of the keysym group to latch */

XkbLatchGroup sends a request to the server to latch the specified group and does not wait
for a reply. It returns True if the request was sent and False otherwise.

5.3 Determining Keyboard State

Xkb keyboard state may be represented in an XkbStateRec structure:

typedef struct {
unsigned char group; /* effective group index */
unsigned char base_group; /* base group index */
unsigned char latched_group; /* latched group index */
unsigned char locked_group; /* locked group index */
unsigned char mods; /* effective modifiers */
unsigned char base_mods; /* base modifiers */
unsigned char latched_mods; /* latched modifiers */
unsigned char locked_mods; /* locked modifiers */
unsigned char compat_state; /* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */
unsigned char compat_grab_mods; /* mods used for compatibility mode grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char compat_lookup_mods;/* mods used for compatibility lookup */

Table 5.2  Symbolic Group Names

Symbolic Name Value
XkbGroup1Index 0
XkbGroup2Index 1
XkbGroup3Index 2
XkbGroup4Index 3
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unsigned short ptr_buttons; /* 1 bit => corresponding pointer btn is down */
} XkbStateRec,*XkbStatePtr;

To obtain the keyboard state, use XkbGetState.

Status XkbGetState(display, device_spec, state_return)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
XkbStatePtr state_return; /* backfilled with Xkb state */

The XkbGetState function queries the server for the current keyboard state, waits for a
reply, and then backfills state_return with the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

5.4 Tracking Keyboard State

The Xkb extension reports XkbStateNotify events to clients wanting notification
whenever the Xkb state changes. The changes reported include changes to any aspect of
the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb events, XkbStateNotify
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

To track changes in the keyboard state for a particular device, select to receive Xkb-
StateNotify events by calling either XkbSelectEvents or XkbSelectEventDetails (see
section 4.3).

Table 5.3  XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (1L << 0)
XkbModifierBaseMask (1L << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (1L << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (1L << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (1L << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (1L << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)
XkbAllStateComponentsMask (0x3fff)
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To receive XkbStateNotify events under all possible conditions, use XkbSelectEvents
and pass XkbStateNotifyMask in both bits_to_change and values_for_bits.

To receive XkbStateNotify events only under certain conditions, use XkbSelectEvent-
Details using XkbStateNotify as the event_type and specifying the desired state
changes in bits_to_change and values_for_bits using mask bits from Table 5.3.

The structure for XkbStateNotify events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbStateNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed; /* bits indicating what has changed */
int group; /* group index of effective group */
int base_group; /* group index of base group */
int latched_group; /* group index of latched group */
int locked_group; /* group index of locked group */
unsigned int mods; /* effective modifiers */
unsigned int base_mods; /* base modifiers */
unsigned int latched_mods; /* latched modifiers */
unsigned int locked_mods; /* locked modifiers */
int compat_state; /* computed compatibility state */
unsigned char grab_mods; /* modifiers used for grabs */
unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char compat_lookup_mods; /* mods used for compatibility look up */
int ptr_buttons; /* core pointer buttons */
KeyCode keycode; /* keycode causing event, 0 if programmatic */
char event_type; /* core event if req_major or req_minor non zero */
char req_major; /* major request code if program trigger, else 0 */
char req_minor; /* minor request code if program trigger, else 0 */

} XkbStateNotifyEvent;

When you receive an XkbStateNotify event, the changed field indicates which ele-
ments of keyboard state have changed. This will be the bitwise inclusive OR of one or
more of the XkbStateNotify event detail masks shown in Table 5.3. All fields reported
in the event are valid, but only those indicated in changed have changed values.

The group field is the group index of the effective keysym group. The base_group,
latched_group, and locked_group fields are set to a group index value representing the
base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fields to a union of the core modifier mask bits; this union
represents the corresponding modifier states. The ptr_button field gives the state of the
core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under application
control. If a key event caused the state change, the keycode field gives the keycode of the
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key event, and the event_type field is set to either KeyPress or KeyRelease. If a pointer
button event caused the state change, the keycode field is zero, and the event_type field is
set to either ButtonPress or ButtonRelease. Otherwise, the major and minor codes
of the request that caused the state change are given in the req_major and req_minor
fields, and the keycode field is zero. The req_major value is the same as the major extension
opcode.
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6 Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
components in detail.

6.1 The XkbDescRec Structure

The complete description of an Xkb keyboard is given by an XkbDescRec. The compo-
nent structures in the XkbDescRec represent the major Xkb components outlined in Fig-
ure 1.1.

typedef struct {
struct _XDisplay * display; /* connection to X server */
unsigned short flags; /* private to Xkb, do not modify */
unsigned short device_spec; /* device of interest */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
XkbControlsPtr ctrls; /* controls */
XkbServerMapPtr server; /* server keymap */
XkbClientMapPtr map; /* client keymap */
XkbIndicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatMapPtr compat; /* compatibility map */
XkbGeometryPtr geom; /* physical geometry of keyboard */

} XkbDescRec, *XkbDescPtr;

The display field points to an X display structure. The flags field is private to the library:
modifying flags may yield unpredictable results. The device_spec field specifies the
device identifier of the keyboard input device, or XkbUseCoreKeyboard, which speci-
fies the core keyboard device. The min_key_code and max_key_code fields specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document that discuss the individual components of the XkbDescRec.

Each structure component has a corresponding mask bit that is used in function calls to
indicate that the structure should be manipulated in some manner, such as allocating it or

Table 6.1  XkbDescRec Component References

XkbDescRec Field For more info
ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8
names Chapter 18
compat Chapter 17
geom Chapter 13
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freeing it. These masks and their relationships to the fields in the XkbDescRec are shown
in Table 6.2.

6.2 Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device description, use XkbGetKey-
board (see also XkbGetKeyboardbyName).

XkbDescPtr XkbGetKeyboard(display, which, device_spec)
Display * display; /* connection to X server */
unsigned int which; /* mask indicating components to return */
unsigned int device_spec; /* device for which to fetch description, or XkbUseCoreKbd */

XkbGetKeyboard allocates and returns a pointer to a keyboard description. It queries the
server for those components specified in the which parameter for device device_spec and
copies the results to the XkbDescRec it allocated. The remaining fields in the keyboard
description are set to NULL. The valid masks for which are those listed in Table 6.2.

XkbGetKeyboard can generate BadAlloc protocol errors.

To free the returned keyboard description, use XkbFreeKeyboard (see section 6.4).

6.3 Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for a device
changes. Refer to section 14.4 for detailed information on tracking changes to the key-
board description.

6.4 Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; calling XkbGetKey-
board usually suffices. In the event you need to create a keyboard description from
scratch, however, use XkbAllocKeyboard rather than directly calling malloc or Xmalloc.

XkbDescRec * XkbAllocKeyboard(void)

If XkbAllocKeyboard fails to allocate the keyboard description, it returns NULL. Other-
wise, it returns a pointer to an empty keyboard description structure. The device_spec field
will have been initialized to XkbUseCoreKbd. You may then either fill in the structure
components or use Xkb functions to obtain values for the structure components from a
keyboard device.

Table 6.2  Mask Bits for XkbDescRec

Mask Bit XkbDescRec
Field Value

XkbControlsMask ctrls (1L<<0)
XkbServerMapMask server (1L<<1)
XkbIClientMapMask map (1L<<2)
XkbIndicatorMapMask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatMapMask compat (1L<<5)
XkbGeometryMask geom (1L<<6)
XkbAllComponentsMask All Fields (0x7f)
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To destroy either an entire an XkbDescRec or just some of its members, use XkbFreeKey-
board.

void XkbFreeKeyboard(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description with components to free */
unsigned int which; /* mask selecting components to free */
Bool free_all; /* True => free all components and xkb */

XkbFreeKeyboard frees the components of xkb specified by which and sets the corre-
sponding values to NULL. If free_all is True, XkbFreeKeyboard frees every non-NULL
component of xkb and then frees the xkb structure itself.
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7 Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules
of keycode to keysym interpretation for all keys; for example, when the Num_Lock key-
sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in particular Mod1 through Mod5) to
keysyms such as Num_Lock and Mode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each modifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for all modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as the real modifiers, Xkb provides a set of sixteen named virtual
modifiers. Each virtual modifier can be bound to any set of the real modifiers (Shift,
Lock, Control, and Mod1-Mod5).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same way —
for example, Num_Lock might be bound to Mod2 for one vendor and to Mod4 for another.
This makes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With
XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindings in effect.

7.1 Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string name to an X Atom and storing the
Atom in the names.vmods array in an XkbDescRec structure (see section 6.1). The posi-
tion of a name Atom in the names.vmods array defines the bit position used to represent
the virtual modifier and also the index used when accessing virtual modifier information
in arrays: the name in the i-th (0 relative) entry of names.vmods is the i-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter that
is a mask representing virtual modifier choices. In each case, the i-th bit (0 relative) of the
mask represents the i-th virtual modifier.

To set the name of a virtual modifier, use XkbSetNames, using XkbVirtualModNames-
Mask in which and the name in the xkb argument; to retrieve indicator names, use XkbGet-
Names. These functions are discussed in Chapter 18.

7.2 Modifier Definitions

An Xkb modifier definition enumerates a collection of real and virtual modifiers but does
not in itself bind those modifiers to any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition
is relevant only in the context of some other entity such as an indicator map, a control, or a
key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct _XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers */
unsigned char real_mods; /* real modifier bits */
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unsigned short vmods; /* virtual modifier bits */
} XkbModsRec,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (real_mods); a similar set of bitmasks corresponding to the 16 named virtual
modifiers (vmods); and an effective mask (mask). The effective mask represents the set of
all real modifiers that can logically be set either by setting any of the real modifiers or by
setting any of the virtual modifiers in the definition. mask is derived from the real and vir-
tual modifiers and should never be explicitly changed — it contains all of the real modifi-
ers specified in the definition (real_mods) plus any real modifiers that are bound to the
virtual modifiers specified in the definition (vmods). The binding of the virtual modifiers
to real modifiers is exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion that has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

7.3 Binding Virtual Modifiers to Real Modifiers

The binding of virtual modifiers to real modifiers is defined by the server.vmods array in
an XkbDescRec structure. Each entry contains the real modifier bits that are bound to the
virtual modifier corresponding to the entry. The overall relationship of fields dealing with
virtual modifiers in the server keyboard description are shown in Figure 16.2.

7.4 Virtual Modifier Key Mapping

Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with, or bound to, each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. The server.vmodmap array indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bits. The server.vmod-
map array is indexed by keycode.

The vmodmap and vmods members of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4).

For example, if Mod3 is bound to the Num_Lock key by the core protocol modifier map-
ping, and the NumLock virtual modifier is bound to they Num_Lock key by the virtual
modifier mapping, Mod3 is added to the set of modifiers associated with NumLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details), and few applications should need to
change the virtual modifier mapping explicitly.

Use XkbGetMap (see section 14.2) to get the virtual modifiers from the server or use Xkb-
GetVirtualMods (see section 16.4.1) to update a local copy of the virtual modifiers bind-
ings from the server. To set the binding of a virtual modifier to a real modifier, use
XkbSetMap (see section 14.3).
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To determine the mapping of virtual modifiers to core X protocol modifiers, use XkbVir-
tualModsToReal.

Bool XkbVirtualModsToReal(xkb, virtual_mask, mask_rtrn)
XkbDescPtr xkb; /* keyboard description for input device */
unsigned int virtual_mask; /* virtual modifier mask to translate */
unsigned int * mask_rtrn; /* backfilled with real modifiers */

If the keyboard description defined by xkb includes bindings for virtual modifiers, XkbVir-
tualModsToReal uses those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specified in virtual_mask. The virtual_mask parameter is a
mask specifying the virtual modifiers to translate; the i-th bit (0 relative) of the mask rep-
resents the i-th virtual modifier. If mask_rtrn is non-NULL, XkbVirtualModsToReal back-
fills it with the resulting real modifier mask. If the keyboard description in xkb does not
include virtual modifier bindings, XkbVirtualModsToReal returns False; otherwise, it
returns True.

Note It is possible for a local (client-side) keyboard description (the xkb parameter) to not
contain any virtual modifier information (simply because the client has not requested
it) while the server’s corresponding definition may contain virtual modifier informa-
tion.

7.4.1 Inactive Modifier Sets

An unbound virtual modifier is one that is not bound to any real modifier
(server->vmods[virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, the effective masks for
these two cases are identical (that is, contain only Shift). When it is essential to distin-
guish between OneThing and Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

7.5 Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefits if the same names are used for common modifiers. The following names are
suggested:

NumLock
ScrollLock
Alt
Meta
AltGr
LevelThree

7.6 Example

If the second (0-relative) entry in names.vmods contains the Atom for “NumLock”, then
0x4 (1<<2) is the virtual modifier bit for the NumLock virtual modifier. If server.vmods[2]
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contains Mod3Mask, then the NumLock virtual modifier is bound to the Mod3 real modi-
fier.

A virtual modifier definition for this example would have:

real_mods = 0
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard has a Num_Lock keysym bound to the key with
keycode 14, and the NumLock virtual modifier is bound to this key, server.vmodmap[14]
contains 0x4.

Finally, if the keyboard also used the real Mod1 modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to
Mod1 or the NumLock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)
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8 Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards have a CapsLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state of the CapsLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bits in the led_mask field of the XKeyboardState map to the particular LEDs
on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in the led_mask field to turn on the Scroll Lock LED or whether the keyboard
even has a Scroll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may also request immediate notification of changes to the
state of any subset of the keyboard indicators, which makes it straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the functions
used for manipulating them.

8.1 Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’t use
these symbolic names for anything; they are there only to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicators, use XkbSetNames
as discussed in Chapter 18. Then set the map using XkbSetMap (see section 14.3) or Xkb-
SetNamedIndicator (below). To retrieve indicator names, use XkbGetNames (Chapter 18).

8.2 Indicator Data Structures

Use the indicator description record, XkbIndicatorRec, and its indicator map,
XkbIndicatorMapRec, to inquire about and control most indicator properties and
behaviors.

8.2.1 XkbIndicatorRec

The description for all the Xkb indicators is held in the indicators field of the complete
keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumIndicators 32

typedef struct {
unsigned long phys_indicators; /* LEDs existence */
XkbIndicatorMapRec maps[XkbNumIndicators]; /* indicator maps */

} XkbIndicatorRec,*XkbIndicatorPtr;

This structure contains the phys_indicators field, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicator maps, one map per indicator.

The phys_indicators field indicates which indicators are bound to physical LEDs on the
keyboard; if a bit is set in phys_indicators, then the associated indicator has a physical
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LED associated with it. This field is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state of CapsLock, but most keyboards do not have an LED that indi-
cates the current group. Because phys_indicators describes a physical characteristic of the
keyboard, you cannot directly change it under program control. However, if a client pro-
gram loads a completely new keyboard description via XkbGetKeyboardByName, or if a
new keyboard is attached and the X implementation notices, phys_indicators changes if
the indicators for the new keyboard are different.

8.2.2 XkbIndicatorMapRec

Each indicator has its own set of attributes that specify whether clients can explicitly set
its state and whether it tracks the keyboard state. The attributes of each indicator are held
in the maps array, which is an array of XkbIndicatorRec structures:

typedef struct {
unsigned char flags; /* how the indicator can be changed */
unsigned char which_groups; /* match criteria for groups */
unsigned char groups; /* which keyboard groups the indicator watches */
unsigned char which_mods; /* match criteria for modifiers */
XkbModsRec mods; /* which modifiers the indicator watches */
unsigned int ctrls; /* which controls the indicator watches */

} XkbIndicatorMapRec, *XkbIndicatorMapPtr;

This indicator map specifies for each indicator:

• The conditions under which the keyboard modifier state affects the indicator
• The conditions under which the keyboard group state affects the indicator
• The conditions under which the state of the boolean controls affects the indicator
• The effect (if any) of attempts to explicitly change the state of the indicator using the

functions XkbSetControls or XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

The flags field specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid values for flags and their effects are shown in
Table 8.1.

Note that if XkbIM_NoAutomatic is not set, by default the indicator follows the key-
board state.

Table 8.1  XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator.
XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change the value of the indicator

based upon a change in the keyboard state, regardless of the
values for the other fields of the indicator map.

XkbIM_LEDDrivesKB (1L<<5) A client application changing the state of the indicator causes
the state of the keyboard to change.
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If XkbIM_LEDDrivesKB is set and XkbIM_NoExplicit is not, and if you call a function
which updates the server’s image of the indicator map (such as XkbSetIndicatorMap or
XkbSetNamedIndicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for which XkbIM_LEDDrivesKB is absent or
for which XkbIM_NoExplicit is present, keyboard state or controls are unaffected.

For example, a keyboard designer may want to make the CapsLock LED controllable
only by the server, but allow the Scroll Lock LED to be controlled by client applications.
To do so, the keyboard designer could set the XkbIM_NoExplicit flag for the
CapsLockLED, but not set it for the Scroll Lock LED. Or the keyboard designer may
wish to allow the CapsLock LED to be controlled by both the server and client applica-
tions and also have the server to automatically change the CapsLockmodifier state when-
ever a client application changes the CapsLock LED. To do so, the keyboard designer
would not set the XkbIM_NoExplicit flag, but would instead set the
XkbIM_LEDDrivesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (only if XkbIM_NoAutomatic is not set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

The which_groups and the groups fields of an indicator map determine how the keyboard
group state affects the corresponding indicator. The which_groups field controls the inter-
pretation of groups and may contain any one of the following values:

#define XkbIM_UseNone 0
#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)
#define XkbIM_UseEffective (1L << 3)
#define XkbIM_UseAnyGroup XkbIM_UseLatched | XkbIM_UseLocked |

XkbIM_UseEffective

The groups field specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGroup1Mask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)
#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (0xf)



November 10, 1997 Library Version 1.0/Document Revision 1.1 37

The X Keyboard Extension 8   Indicators

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_groups and groups is shown in Table 8.2.

The effect of which_groups and groups when you change an indicator for which
XkbIM_LEDDrivesKB is set (the indicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

XkbIndicatorMapRec which_mods and mods fields

The mods field specifies what modifiers an indicator watches. The mods field is an Xkb
modifier definition, XkbModsRec, as described in section 7.2, which can specify both real
and virtual modifiers. The mods field takes effect even if some or all of the virtual indica-
tors specified in mods are unbound. To specify the mods field, in general, assign the mod-
ifiers of interest to mods.real_mods and the virtual modifiers of interest to mods.vmods.
You can disregard the mods.mask field unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior on its own). Relatively

Table 8.2  XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups Effect
XkbIM_UseNone The groups field and the current keyboard group state are ignored.
XkbIM_UseBase If groups is nonzero, the indicator is lit whenever the base keyboard

group is nonzero. If groups is zero, the indicator is lit whenever the base
keyboard group is zero.

XkbIM_UseLatched If groups is nonzero, the indicator is lit whenever the latched keyboard
group is nonzero. If groups is zero, the indicator is lit whenever the
latched keyboard group is zero.

XkbIM_UseLocked The groups field is interpreted as a mask. The indicator is lit when the
current locked keyboard group matches one of the bits that are set in
groups.

XkbIM_UseEffective The groups field is interpreted as a mask. The indicator is lit when the
current effective keyboard group matches one of the bits that are set in
groups.

Table 8.3  XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard

 which_groups New State Effect on Keyboard Group State
XkbIM_UseNone On or Off No effect
XkbIM_UseBase On or Off No effect
XkbIM_UseLatched On The groups field is treated as a group mask. The keyboard

group latch is changed to the lowest numbered group speci-
fied in groups; if groups is empty, the keyboard group latch is
changed to zero.

XkbIM_UseLatched Off The groups field is treated as a group mask. If the indicator is
explicitly extinguished, keyboard group latch is changed to
the lowest numbered group not specified in groups; if groups
is zero, the keyboard group latch is set to the index of the
highest legal keyboard group.

XkbIM_UseLocked or
XkbIM_UseEffective

On If the groups mask is empty, group is not changed; otherwise,
the locked keyboard group is changed to the lowest num-
bered group specified in groups.

XkbIM_UseLocked or
XkbIM_UseEffective

Off Locked keyboard group is changed to the lowest numbered
group that is not specified in the groups mask, or to Group1
if the groups mask contains all keyboard groups.
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few applications need to do so, but if you find it necessary, you can either read the indica-
tor map back from the server after you update it (the server automatically updates the
mask field whenever any of the real or virtual modifiers are changed in the modifier defi-
nition) or you can use XkbVirtualModsToReal to determine the proper contents for the
mask field, assuming that the XkbDescRec contains the virtual modifier definitions.

which_mods specifies what criteria Xkb uses to determine a match with the corresponding
mods field by specifying one or more components of the Xkb keyboard state. If
XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the indicator is lit
whenever any of the modifiers specified in the mask field of the mods modifier definition
are also set in any of the current keyboard state components specified by which_mods.
Remember that the mask field is comprised of all of the real modifiers specified in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use a bitwise inclusive OR of the following values to
compose a value for which_mods:

#define XkbIM_UseNone 0
#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)
#define XkbIM_UseEffective (1L << 3)
#define XkbIM_UseCompat (1L << 4)
#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_UseLatched | XkbIM_UseLocked

| XkbIM_UseEffective | XkbIM_UseCompat

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_mods and mods is shown in Table 8.4

Table 8.4  XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier state are ignored.
XkbIM_UseBase The indicator is lit when any of the modifiers specified in the mask field

of mods are on in the keyboard base state. If both mods.real_mods
and mods.vmods are zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UseLatched The indicator is lit when any of the modifiers specified in the mask field
of mods are latched. If both mods.real_mods and mods.vmods are
zero, the indicator is lit when none of the modifier keys are
latched.

XkbIM_UseLocked The indicator is lit when any of the modifiers specified in the mask field
of mods are locked. If both mods.real_mods and mods.vmods are
zero, the indicator is lit when none of the modifier keys are locked.

XkbIM_UseEffective The indicator is lit when any of the modifiers specified in the mask field
of mods are in the effective keyboard state. If both mods.real_mods
and mods.vmods are zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when any of the modifiers specified in the mask field
of mods are in the keyboard compatibility state. If both
mods.real_mods and mods.vmods are zero, the indicator is lit
when the keyboard compatibility state contains no modifiers.
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The effect on the keyboard modifiers of which_mods and mods when you change an indi-
cator for which XkbIM_LEDDrivesKB is set (the indicator drives the keyboard) is shown
in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

XkbIndicatorMapRec ctrls field

The ctrls field specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeatKeysMask (1L << 0)
#define XkbSlowKeysMask (1L << 1)
#define XkbBounceKeysMask (1L << 2)
#define XkbStickyKeysMask (1L << 3)
#define XkbMouseKeysMask (1L << 4)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbAccessXKeysMask (1L << 6)
#define XkbAccessXTimeoutMask (1L << 7)
#define XkbAccessXFeedbackMask (1L << 8)
#define XkbAudibleBellMask (1L << 9)
#define XkbOverlay1Mask (1L << 10)
#define XkbOverlay2Mask (1L << 11)
#define XkbAllBooleanCtrlsMask (0x00001FFF)

Xkb lights the indicator whenever any of the boolean controls specified in ctrls is enabled.

8.3 Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with interoperability, uses indicator names. The correspondence between the indicator
name and the bit position in masks is as follows: one of the parameters returned from Xkb-
GetNamedIndicators is an index that is the bit position to use in any function call that

Table 8.5  XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard

which_mods New State Effect on Keyboard Modifiers
XkbIM_UseNone or
XkbIM_UseBase

On or Off No Effect

XkbIM_UseLatched On Any modifiers specified in the mask field of mods are
added to the latched modifiers.

XkbIM_UseLatched Off Any modifiers specified in the mask field of mods are
removed from the latched modifiers.

XkbIM_UseLocked,
XkbIM_UseCompat, or
XkbIM_UseEffective

On Any modifiers specified in the mask field of mods are
added to the locked modifiers.

XkbIM_UseLocked Off Any modifiers specified in the mask field of mods are
removed from the locked modifiers.

XkbIM_UseCompat or
XkbIM_UseEffective

Off Any modifiers specified in the mask field of mods are
removed from both the locked and latched modifiers.
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requires a mask of indicator bits, as well as the indicator’s index into the XkbIndica-
torRec array of indicator maps.

8.3.1 Getting Indicator State

Because the state of the indicators is relatively volatile, the keyboard description does not
hold the current state of the indicators. To obtain the current state of the keyboard indica-
tors, use XkbGetIndicatorState.

Status XkbGetIndicatorState(display, device_spec, state_return)
Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int *state_return; /* backfilled with a mask of the indicator state */

XkbGetIndicatorState queries the display for the state of the indicators on the device spec-
ified by the device_spec. For each indicator that is “turned on” on the device, the associ-
ated bit is set in state_return. If a compatible version of the Xkb extension is not available
in the server, XkbGetIndicatorState returns a BadMatch error. Otherwise, it sends the
request to the X server, places the state of the indicators into state_return, and returns
Success. Thus the value reported by XkbGetIndicatorState is identical to the value
reported by the core protocol.

8.3.2 Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicators, use Xkb-
GetIndicatorMap.

Status XkbGetIndicatorMap(dpy, which, desc)
Display * dpy; /* connection to the X server */
unsigned int which; /* mask of indicators for which maps should be returned */
XkbDescPtr desc; /* keyboard description to be updated */

XkbGetIndicatorMap obtains the maps from the server for only those indicators specified
by the which mask and copies the values into the keyboard description specified by desc. If
the indicators field of the desc parameter is NULL, XkbGetIndicatorMap allocates and ini-
tializes it.

XkbGetIndicatorMap can generate BadAlloc, BadLength, BadMatch, and BadImple-
mentation errors.

To free the indicator maps, use XkbFreeIndicatorMaps (see section 8.6).

8.3.3 Getting Indicator Information by Name

Xkb also allows applications to refer to indicators by name. Use XkbGetNames to get the
indicator names (see Chapter 18). Using names eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor-specific con-
stants such as WSKBLed_ScrollLock mask on Digital workstations or
XLED_SCROLL_LOCK on Sun workstations, you can instead use XkbGetNamedIndicator
to look up information on the indicator named “Scroll Lock.”
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Use XkbGetNamedIndicator to look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator(dpy, dev_spec, name, ndx_rtrn, state_rtrn, map_rtrn, real_rtrn)
Display * dpy; /* connection to the X server */
unsigned int device_spec; /* keyboard device ID, or XkbUseCoreKbd */
Atom name; /* name of the indicator to be retrieved */
int * ndx_rtrn; /* backfilled with the index of the retrieved indicator */
Bool * state_rtrn; /* backfilled with the current state of the retrieved indicator */
XkbIndicatorMapPtrmap_rtrn;/* backfilled with the mapping for the retrieved indicator */
Bool * real_rtrn; /* backfilled with True if the named indicator is real (physical) */

If the device specified by device_spec has an indicator named name, XkbGetNamedIndi-
cator returns True and populates the rest of the parameters with information about the
indicator. Otherwise, XkbGetNamedIndicator returns False.

The ndx_rtrn field returns the zero-based index of the named indicator. This index is the
bit position to use in any function call that requires a mask of indicator bits, as well as the
indicator’s index into the XkbIndicatorRec array of indicator maps. state_rtrn returns
the current state of the named indicator (True = on, False = off). map_rtrn returns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, the real_rtrn parameter is set to True.

Each of the “_rtrn” arguments is optional; you can pass NULL for any unneeded “_rtrn”
arguments.

XkbGetNamedIndicator can generate BadAtom and BadImplementation errors.

8.4 Changing Indicator Maps and State

Just as you can get the indicator map using a mask or using an indicator name, so you can
change it using a mask or a name.

Note You cannot change the phys_indicators field of the indicators structure. The only
way to change the phys_indicators field is to change the keyboard map.

There are two ways to make changes to indicator maps and state: either change a local
copy of the indicator maps and use XkbSetIndicatorMap or XkbSetNamedIndicator, or, to
reduce network traffic, use an XkbIndicatorChangesRec structure and use
XkbChangeIndicators.

8.4.1 Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Tables 8.3 and Table 8.5 for information on the
effects of the indicator map fields when explicit changes are made.

If XkbIM_LEDDrivesKB is set and XkbIM_NoExplicit is not, and if you call a function
that updates the server’s image of the indicator map (such as XkbSetIndicatorMap or Xkb-
SetNamedIndicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which XkbIM_LEDDrivesKB is absent or for which XkbIM_NoExplicit is present,
keyboard state or controls are unaffected.
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If neither XkbIM_NoAutomatic nor XkbIM_NoExplicit is set in an indicator map,
Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it is possible
for a single change to affect keyboard group, modifiers, and controls simultaneously.

If you change an indicator for which both the XkbIM_LEDDrivesKB and
XkbIM_NoAutomatic flags are specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remains in the new state until it is explicitly changed again.

If the XkbIM_NoAutomatic flag is not set and XkbIM_LEDDrivesKB is set, Xkb applies
the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-
cator to end up in a different state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator with which_mods of XkbIM_UseBase and mods of
Shift if, at the time Xkb processes the request to extinguish the indicator, one of the Shift
keys is physically depressed.

If you explicitly light an indicator for which XkbIM_LEDDrivesKB is set, Xkb enables all
of the boolean controls specified in the ctrls field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

8.4.2 Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify a local copy of the keyboard
description, then use XkbSetIndicatorMap to download the changes to the server:

Bool XkbSetIndicatorMap(dpy, which, desc)
Display * dpy; /* connection to the X server */
unsigned int which; /* mask of indicators to change */
XkbDescPtr desc; /* keyboard description from which the maps are taken */

For each bit set in the which parameter, XkbSetIndicatorMap sends the corresponding
indicator map from the desc parameter to the server.
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8.4.3 Changing Indicator Maps by Name

XkbSetNamedIndicator can do several related things:

• Name an indicator if it is not already named
• Toggle the state of the indicator
• Set the indicator to a specified state
• Set the indicator map for the indicator

Bool XkbSetNamedIndicator(dpy, device_spec, name, change_state, state, create_new, map)
Display * dpy; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
Atom name; /* name of the indicator to change */
Bool change_state; /* whether to change the indicator state or not */
Bool state; /* desired new state for the indicator */
Bool create_new; /* whether a new indicator with the specified name

should be created when necessary */
XkbIndicatorMapPtr map; /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the server, XkbSetNamed-
Indicator returns False. Otherwise, it sends a request to the X server to change the indi-
cator specified by name and returns True.

If change_state is True, and the optional parameter, state, is not NULL, XkbSetNamed-
Indicator tells the server to change the state of the named indicator to the value specified
by state.

If an indicator with the name specified by name does not already exist, the create_new
parameter tells the server whether it should create a new named indicator. If create_new is
True, the server finds the first indicator that doesn’t have a name and gives it the name
specified by name.

If the optional parameter, map, is not NULL, XkbSetNamedIndicator tells the server to
change the indicator’s map to the values specified in map.

XkbSetNamedIndicator can generate BadAtom and BadImplementation errors. In
addition, it can also generate XkbIndicatorStateNotify (see section 8.5), XkbIndi-
catorMapNotify, and XkbNamesNotify events (see section 18.5).

8.4.4 The XkbIndicatorChangesRec Structure

The XkbIndicatorChangesRec identifies small modifications to the indicator map.
Use it with the function XkbChangeIndicators to reduce the amount of traffic sent to the
server.

typedef struct _XkbIndicatorChanges {
unsigned int  state_changes;
unsigned int  map_changes;

}XkbIndicatorChangesRec,*XkbIndicatorChangesPtr;

The state_changes field is a mask that specifies the indicators that have changed state, and
map_changes is a mask that specifies the indicators whose maps have changed.
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To change indicator maps or state without passing the entire keyboard description, use
XkbChangeIndicators.

Bool XkbChangeIndicators(dpy, xkb, changes, state)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description from which names are to be

taken. */
XkbIndicatorChangesPtr changes; /* indicators to be updated on the server */
unsigned int state; /* new state of indicators listed in

changes->state_changes */

XkbChangeIndicators copies any maps specified by changes from the keyboard descrip-
tion, xkb, to the server specified by dpy. If any bits are set in the state_changes field of
changes, XkbChangeIndicators also sets the state of those indicators to the values speci-
fied in the state mask. A 1 bit in state turns the corresponding indicator on, a 0 bit turns it
off.

XkbChangeIndicators can generate BadAtom and BadImplementation errors. In addi-
tion, it can also generate XkbIndicatorStateNotify and XkbIndicatorMapNotify
events (see section 8.5).

8.5 Tracking Changes to Indicator State or Map

Whenever an indicator changes state, the server sends XkbIndicatorStateNotify
events to all interested clients. Similarly, whenever an indicator’s map changes, the server
sends XkbIndicatorMapNotify events to all interested clients.

To receive XkbIndicatorStateNotify events, use XkbSelectEvents (see section 4.3)
with both the bits_to_change and values_for_bits parameters containing XkbIndica-
torStateNotifyMask. To receive XkbIndicatorMapNotify events, use XkbSelect-
Events with XkbIndicatorMapNotifyMask.

To receive events for only specific indicators, use XkbSelectEventDetails. Set the
event_type parameter to XkbIndicatorStateNotify or XkbIndicatorMapNo-
tify, and set both the bits_to_change and values_for_bits detail parameters to a mask
where each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:

typedef struct _XkbIndicatorNotify {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* specifies state or map notify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd*/
unsigned int changed; /* mask of indicators with new state or map */
unsigned int state; /* current state of all indicators */

} XkbIndicatorNotifyEvent;
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xkb_type is either XkbIndicatorStateNotify or XkbIndicatorMapNotify,
depending on whether the event is a kbIndicatorStateNotify event or kbIndica-
torMapNotify event.

The changed parameter is a mask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of type XkbIndicatorMapNotify, changed reports the
maps that changed. If the event is of type XkbIndicatorStateNotify, changed reports
the indicators that have changed state. state is a mask that specifies the current state of all
indicators, whether they have changed or not, for both XkbIndicatorStateNotify
and IndicatorMapNotify events.

When your client application receives either a XkbIndicatorStateNotify event or
XkbIndicatorMapNotify event, you can note the changes in a changes structure by
calling XkbNoteIndicatorChanges.

void XkbNoteIndicatorChanges(old, new, wanted)
XkbIndicatorChangesPtr old; /* XkbIndicatorChanges structure to be updated */
XkbIndicatorNotifyEvent * new; /* event from which changes are to be copied */
unsigned int wanted; /* which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of XkbIndicatorMapMask and
XkbIndicatorStateMask. XkbNoteIndicatorChanges copies any changes reported in
new and specified in wanted into the changes record specified by old.

To update a local copy of the keyboard description with the actual values, pass the results
of one or more calls to XkbNoteIndicatorChanges to XkbGetIndicatorChanges:

Status XkbGetIndicatorChanges(dpy, xkb, changes, state)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description to hold the new values */
XkbIndicatorChangesPtr changes; /* indicator maps/state to be obtained from the server */
unsigned int * state; /* backfilled with the state of the indicators */

XkbGetIndicatorChanges examines the changes parameter, pulls over the necessary infor-
mation from the server, and copies the results into the xkb keyboard description. If any bits
are set in the state_changes field of changes, XkbGetIndicatorChanges also places the
state of those indicators in state. If the indicators field of xkb is NULL, XkbGetIndicator-
Changes allocates and initializes it. To free the indicators field, use XkbFreeIndicators
(see section 8.6).

XkbGetIndicatorChanges can generate BadAlloc, BadImplementation, and Bad-
Match errors.

8.6 Allocating and Freeing Indicator Maps

Most applications do not need to directly allocate the indicators member of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, use XkbAllocIndicatorMaps.

Status XkbAllocIndicatorMaps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

The xkb parameter must point to a valid keyboard description. If it doesn’t, XkbAllocIndi-
catorMaps returns a BadMatch error. Otherwise, XkbAllocIndicatorMaps allocates and
initializes the indicators member of the keyboard description record and returns Suc-
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cess. If XkbAllocIndicatorMaps was unable to allocate the indicators record, it reports a
BadAlloc error.

To free memory used by the indicators member of an XkbDescRec structure, use
XkbFreeIndicatorMaps.

void XkbFreeIndicatorMaps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicators member of the keyboard description record pointed to by xkb is not NULL,
XkbFreeIndicatorMaps frees the memory associated with the indicators member of xkb.
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9 Bells

The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to
attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell is rung. For the purposes of this document, the audible bell is defined to be
the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

You can ask to receive XkbBellNotify events (see section 9.4) when any client rings
any one of the following:

• The default bell
• Any bell on an input device that can be specified by a bell_class and bell_id pair
• Any bell specified only by an arbitrary name. (This is, from the server’s point of view,

merely a name, and not connected with any physical sound-generating device. Some
client application must generate the sound, or visual feedback, if any, that is associated
with the name.)

You can also ask to receive XkbBellNotify events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types previously listed.

You can disable audible bells on a global basis (to set the AudibleBell control, see
Chapter 10). For example, a client that replaces the keyboard bell with some other audible
cue might want to turn off the AudibleBell control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBellNotify events, you can generate feedback different from the default bell.

You can, however, override the AudibleBell control by calling one of the functions that
force the ringing of a bell in spite of the setting of the AudibleBell control — Xkb-
ForceDeviceBell or XkbForceBell (see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations that gen-
erate feedback. See section 10.6.3 for a discussion on AccessXFeedback control.

This chapter describes bell names, the functions used to generate named bells, and the
events the server generates for bells.

9.1 Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as a result, the name is then passed to all other clients interested in receiving
XkbBellNotify events. Note that these are arbitrary names and that there is no binding
to any sounds. Any sounds or other effects (such as visual bells on the screen) must be
generated by a client application upon receipt of the bell event containing the name. There
is no default name for the default keyboard bell. The server does generate some pre-
defined bells for the AccessX controls (see section 10.6.3). These named bells are shown
in Table 9.1; the name is included in any bell event sent to clients that have requested to
receive XkbBellNotify events.
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9.2 Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This
is useful if you need to use an audio server instead of the system beep. For example, when
an audio client starts, it could disable the audible bell (the system bell) and then listen for
XkbBellNotify events (see section 9.4). When it receives a XkbBellNotify event, the
audio client could then send a request to an audio server to play a sound.

You can control the audible bells feature by passing the XkbAudibleBellMask to
XkbChangeEnabledControls (see section 10.1.1). If you set XkbAudibleBellMask on,
the server rings the system bell when a bell event occurs. This is the default. If you set
XkbAudibleBellMask off and a bell event occurs, the server does not ring the system
bell unless you call XkbForceDeviceBell or XkbForceBell (see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2.

9.3 Bell Functions

Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functions in this section have bell_class and bell_id
parameters; set them as follows: Set bell_class to BellFeedbackClass or KbdFeed-
backClass. A device can have more than one feedback of each type; set bell_id to the
particular bell feedback of bell_class type.

Table 9.1  Predefined Bells

Action Named Bell
Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff
More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn
Control turned off AX_FeatureOff
More than one control changed state AX_FeatureChange
SlowKeys and BounceKeys about to be turned on or off AX_SlowKeysWarning
SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SlowKeys key released AX_SlowKeyRelease
BounceKeys key rejected AX_BounceKeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unlocked AX_StickyUnlock
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Table 9.2 shows the conditions that cause a bell to sound or an XkbBellNotifyEvent to
be generated when a bell function is called.

9.3.1 Generating Named Bells

To ring the bell on an X input extension device or the default keyboard, use XkbDevice-
Bell.

Bool XkbDeviceBell(display, window, device_id, bell_class, bell_id, percent, name)
Display * display; /* connection to the X server */
Window window; /* window for which the bell is generated, or None */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int bell_class; /* X input extension bell class of the bell to be rung */
unsigned int bell_id; /* X input extension bell ID of the bell to be rung */
int percent; /* bell volume, from -100 to 100 inclusive */
Atom name; /* a name for the bell, or NULL */

Set percent to be the volume relative to the base volume for the keyboard as described for
XBell.

Note that bell_class and bell_id indicate the bell to physically ring. name is simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input device, use XGetFeed-
backControl. See the X input extension documentation for more information on XGet-
FeedbackControl and related data structures.

If a compatible keyboard extension is not present in the X server, XkbDeviceBell immedi-
ately returns False. Otherwise, XkbDeviceBell rings the bell as specified for the display
and keyboard device and returns True. If you have disabled the audible bell, the server
does not ring the system bell, although it does generate a XkbBellNotify event.

You can call XkbDeviceBell without first initializing the keyboard extension.

As a convenience function, Xkb provides a function to ring the bell on the default key-
board: XkbBell.

Bool XkbBell(display, window, percent, name)
Display * display; /* connection to the X server */
Window window; /* event window, or None*/
int percent; /* relative volume, which can range from -100 to 100 inclusive */
Atom name; /* a bell name, or NULL */

Table 9.2  Bell Sounding and Bell Event Generating

Function called AudibleBell Server sounds
a bell

Server sends an
XkbBellNotifyEvent

XkbDeviceBell On Yes Yes
XkbDeviceBell Off No Yes
XkbBell On Yes Yes
XkbBell Off No Yes
XkbDeviceBellEvent On or Off No Yes
XkbBellEvent On or Off No Yes
XkbDeviceForceBell On or Off Yes No
XkbForceBell On or Off Yes No
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If a compatible keyboard extension isn’t present in the X server, XkbBell calls XBell with
the specified display and percent, and returns False. Otherwise, XkbBell calls XkbDevi-
ceBell with the specified display, window, percent, and name, a device_spec of XkbUseC-
oreKbd, a bell_class of XkbDfltXIClass, and a bell_id of XkbDfltXIId, and returns
True.

If you have disabled the audible bell, the server does not ring the system bell, although it
does generate a XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

9.3.2 Generating Named Bell Events

Using Xkb, you can also generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, use XkbDeviceBellEvent.

Bool XkbDeviceBellEvent(display, window, device_spec, bell_class, bell_id, percent, name)
Display * display; /* connection to the X server */
Window window; /* event window, or None*/
unsigned int device_spec;/* device ID, or XkbUseCoreKbd */
unsigned int bell_class;/* input extension bell class for the event */
unsigned int bell_id; /* input extension bell ID for the event */
int percent; /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name; /* a bell name, or NULL */

If a compatible keyboard extension isn’t present in the X server, XkbDeviceBellEvent
immediately returns False. Otherwise, XkbDeviceBellEvent causes an XkbBellNotify
event to be sent to all interested clients and returns True. Set percent to be the volume rel-
ative to the base volume for the keyboard as described for XBell.

In addition, XkbDeviceBellEvent may generate Atom protocol errors as well as Xkb-
BellNotify events. You can call XkbBell without first initializing the keyboard exten-
sion.

As a convenience function, Xkb provides a function to cause a bell event for the keyboard
without ringing the bell: XkbBellEvent.

Bool XkbBellEvent(display, window, percent, name)
Display * display; /* connection to the X server */
Window window; /* the event window, or None */
int percent; /* relative volume, which can range from -100 to 100 inclusive */
Atom name; /* a bell name, or NULL */

If a compatible keyboard extension isn’t present in the X server, XkbBellEvent immedi-
ately returns False. Otherwise, XkbBellEvent calls XkbDeviceBellEvent with the speci-
fied display, window, percent, and name, a device_spec of XkbUseCoreKbd, a bell_class
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of XkbDfltXIClass, and a bell_id of XkbDfltXIId, and returns what XkbDevice-
BellEvent returns.

XkbBellEvent generates a XkbBellNotify event.

You can call XkbBellEvent without first initializing the keyboard extension.

9.3.3 Forcing a Server-Generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, use
XkbForceDeviceBell.

Bool XkbForceDeviceBell(display, window, device_spec, bell_class, bell_id, percent)
Display * display; /* connection to the X server */
Window window; /* event window, or None */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int bell_class; /* input extension class of the bell to be rung */
unsigned int bell_id; /* input extension ID of the bell to be rung */
int percent; /* relative volume, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’t present in the X server, XkbForceDeviceBell
immediately returns False. Otherwise, XkbForceDeviceBell rings the bell as specified for
the display and keyboard device and returns True. Set percent to be the volume relative to
the base volume for the keyboard as described for XBell. There is no name parameter
because XkbForceDeviceBell does not cause an XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells, use XkbForceBell.

Bool XkbForceBell(display, percent)
Display * display; /* connection to the X server */
int percent; /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’t present in the X server, XkbForceBell calls XBell
with the specified display and percent and returns False. Otherwise, XkbForceBell calls
XkbForceDeviceBell with the specified display and percent, device_spec =XkbUseC-
oreKbd, bell_class = XkbDfltXIClass, bell_id = XkbDfltXIId,window = None, and
name = NULL, and returns what XkbForceDeviceBell returns.

XkbForceBell does not cause an XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

9.4 Detecting Bells

Xkb generates XkbBellNotify events for all bells except for those resulting from calls
to XkbForceDeviceBell and XkbForceBell. To receive XkbBellNotify events under all
possible conditions, pass XkbBellNotifyMask in both the bits_to_change and
values_for_bits parameters to XkbSelectEvents (see section 4.3).

The XkbBellNotify event has no event details. It is either selected or it is not. How-
ever, you can call XkbSelectEventDetails using XkbBellNotify as the event_type and
specifying XkbAllBellNotifyMask in bits_to_change and values_for_bits. This has
the same effect as a call to XkbSelectEvents.
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The structure for the XkbBellNotify event type contains:

typedef struct _XkbBellNotify {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbBellNotify */
unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */
int percent; /* requested volume as % of max */
int pitch; /* requested pitch in Hz */
int duration; /* requested duration in microseconds */
unsigned int bell_class; /* X input extension feedback class */
unsigned int bell_id; /* X input extension feedback ID */
Atom name; /* “name” of requested bell */
Window window; /* window associated with event */
Bool event_only; /* False -> the server did not produce a beep */

} XkbBellNotifyEvent;

If your application needs to generate visual bell feedback on the screen when it receives a
bell event, use the window ID in the XkbBellNotifyEvent, if present.
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10 Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; those
controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as the Boolean Controls. Boolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. The remaining controls, known as the Non-Boolean Controls, are always active. The
XkbControlsRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior as a whole is
enabled or disabled. The attributes and state for most of these controls are held in the
XkbControlsRec structure (see section 10.8).

You can manipulate the Xkb controls individually, via convenience functions, or as a
whole. To treat them as a group, modify an XkbControlsRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flags to an Xkb
library function, or use a XkbControlsChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use an XkbControlsRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.

Table 10.1  Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
Controls for enabling and disabling other controls EnabledControls No

AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key behavior PerKeyRepeat No

RepeatKeys Boolean
DetectableAutorepeat Boolean

Controls for keyboard overlays Overlay1 Boolean
Overlay2 Boolean

Controls for using the mouse from the keyboard MouseKeys Boolean
MouseKeysAccel Boolean

Controls for better keyboard access by AccessXFeedback Boolean
physically impaired persons AccessXKeys Boolean

AccessXTimeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean

Controls for general keyboard mapping GroupsWrap No
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The individual categories and controls are described first, together with functions for
manipulating them. A description of the XkbControlsRec structure and the general
functions for dealing with all of the controls at once follow at the end of the chapter.

10.1 Controls that Enable and Disable Other Controls

Enable and disable the boolean controls under program control by using the Enabled-
Controls control; enable and disable them upon program exit by configuring the
AutoReset control.

10.1.1 The EnabledControls Control

The EnabledControls control is a bit mask where each bit that is turned on means the
corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctrls field of an XkbControlsRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7.

Use XkbChangeEnabledControls to manipulate the EnabledControls control.

Bool XkbChangeEnabledControls(dpy, device_spec, mask, values)
Display * dpy; /* connection to X server */
unsigned int device_spec; /* keyboard device to modify */
unsigned int mask; /* 1 bit -> controls to enable / disable */
unsigned int values; /* 1 bit => enable, 0 bit => disable */

The mask parameter specifies the boolean controls to be enabled or disabled, and the val-
ues mask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bits in Table
10.7, using only those masks with “ok” in the enabled_ctrls column.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized, XkbChangeEnabledControls returns False; otherwise, it sends
the request to the X server and returns True.

Note that the EnabledControls control only enables and disables controls; it does not
configure them. Some controls, such as the AudibleBell control, have no configuration
attributes and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributes to configure their behavior. For example, the
RepeatControl control uses repeat_delay and repeat_interval fields to describe the
timing behavior of keys that repeat. The RepeatControl behavior is turned on or off

IgnoreGroupLock Boolean
IgnoreLockMods No
InternalMods No

Miscellaneous per-client controls GrabsUseXKBState Boolean
LookupStateWhenGrab
bed

Boolean

SendEventUsesXKBSta
te

Boolean

Table 10.1  Xkb Keyboard Controls

Type of Control Control Name Boolean Control?



November 10, 1997 Library Version 1.0/Document Revision 1.1 55

The X Keyboard Extension 10   Keyboard Controls

depending on the value of the XkbRepeatKeysMask bit, but you must use other means,
as described in this chapter, to configure its behavior in detail.

10.1.2 The AutoReset Control

You can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled via two masks maintained in the X server on a
per-client basis. There is no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specified in the auto-reset
mask are set to the corresponding value from the auto-reset values mask. This makes it
possible for clients to “clean up after themselves” automatically, even if abnormally termi-
nated. The bits used in the masks correspond to the EnabledControls control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off the AudibleBell control to prevent the server from also generating a
sound and avoid cacophony. If the client were to exit without resetting the AudibleBell
control, the user would be left without any feedback at all. Setting AudibleBell in both
the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto-reset controls, use XkbGetAutoResetControls.

Bool XkbGetAutoResetControls(dpy, auto_ctrls, auto_values)
Display * dpy; /* connection to X server */
unsigned int * auto_ctrls; /* specifies which bits in auto_values are relevant */
unsigned int * auto_values; /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetControls backfills auto_ctrls and auto_values with the AutoReset con-
trol attributes for this particular client. It returns True if successful, and False otherwise.

To change the current values of the AutoReset control attributes, use XkbSetAutoReset-
Controls.

Bool XkbSetAutoResetControls(dpy, changes, auto_ctrls, auto_values)
Display * dpy; /* connection to X server */
unsigned int changes; /* controls for which to change auto-reset values */
unsigned int * auto_ctrls; /* controls from changes that should auto reset */
unsigned int * auto_values; /* 1 bit => auto-reset on */

XkbSetAutoResetControls changes the auto-reset status and associated auto-reset values
for the controls selected by changes. For any control selected by changes, if the corre-
sponding bit is set in auto_ctrls, the control is configured to auto-reset when the client
exits. If the corresponding bit in auto_values is on, the control is turned on when the client
exits; if zero, the control is turned off when the client exits. For any control selected by
changes, if the corresponding bit is not set in auto_ctrls, the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls for StickyKeys the way they are:

ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so that StickyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, 0, 0);
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To change the auto-reset controls so that StickyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);

To change the auto-reset controls so that StickyKeys are turned on when the client exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetControls backfills auto_ctrls and auto_values with the auto-reset con-
trols for this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in the changes mask.

10.2 Control for Bell Behavior

The X server’s generation of sounds is controlled by the AudibleBell control. Configu-
ration of different bell sounds is discussed in Chapter 9.

10.2.1 The AudibleBell Control

The AudibleBell control is a boolean control that has no attributes. As such, you may
enable and disable it using either the EnabledControls control or the AutoReset con-
trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing a real sound; when disabled, requests to the
server to generate a sound are ignored unless the sound is forced. See section 9.2.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three controls, the PerKeyRe-
peat control, which is always active, and the RepeatKeys and DetectableAutore-
peat controls, which are boolean controls that may be enabled and disabled.
PerKeyRepeat determines which keys are allowed to repeat. RepeatKeys governs the
behavior of an individual key when it is repeating. DetectableAutorepeat allows a
client to detect when a key is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

The PerKeyRepeat control is a bitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. The Xkb PerKeyRe-
peat control provides no functionality different from that available via the core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The
PerKeyRepeat control settings are carried in the per_key_repeat field of an XkbCon-
trolsRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol allows only control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held down. RepeatKeys is a boolean control that
extends this capability by adding control over the delay until a key begins to repeat and the
rate at which it repeats. RepeatKeys is coupled with the core auto-repeat control: when
RepeatKeys is enabled or disabled, the core auto-repeat is enabled or disabled and vice
versa.
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Auto-repeating keys are controlled by two attributes. The first, timeout, is the delay after
the initial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. As with all boolean
controls, configuring the attributes that determine how the control operates does not auto-
matically enable the control as a whole; see section 10.1.

To get the current attributes of the RepeatKeys control for a keyboard device, use Xkb-
GetAutoRepeatRate.

Bool XkbGetAutoRepeatRate(display, device_spec, timeout_rtrn, interval_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec; /* desired device ID, or XkbUseCoreKbd */
unsigned int * timeout_rtrn; /* backfilled with initial repeat delay, ms */
unsigned int * interval_rtrn; /* backfilled with subsequent repeat delay, ms */

XkbGetAutoRepeatRate queries the server for the current values of the RepeatControls
control attributes, backfills timeout_rtrn and interval_rtrn with them, and returns True. If
a compatible version of the Xkb extension is not available in the server XkbGetAutoRepe-
atRate returns False.

To set the attributes of the RepeatKeys control for a keyboard device, use XkbSetAutoRe-
peatRate.

Bool XkbSetAutoRepeatRate(display, device_spec, timeout, interval)
Display * display; /* connection to X server */
unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned int timeout; /* initial delay, ms */
unsigned int interval; /* delay between repeats, ms */

XkbSetAutoRepeatRate sends a request to the X server to configure the AutoRepeat con-
trol attributes to the values specified in timeout and interval.

XkbSetAutoRepeatRate does not wait for a reply; it normally returns True. Specifying a
zero value for either timeout or interval causes the server to generate a BadValue proto-
col error. If a compatible version of the Xkb extension is not available in the server, Xkb-
SetAutoRepeatRate returns False.

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
a key and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multiple KeyPress events with no intervening
KeyRelease event. The standard behavior of the X server is to generate a KeyRelease
event for every KeyPress event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating multiple KeyPress events, the
device-independent part of the X server by default synthetically generates a KeyRelease
event after each KeyPress event. This provides predictable behavior for X clients, but
does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to request detectable auto-repeat. If a client requests and the server
supports DetectableAutorepeat, Xkb generates KeyRelease events only when the
key is physically released. If DetectableAutorepeat is not supported or has not been
requested, the server synthesizes a KeyRelease event for each repeating KeyPress
event it generates.
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DetectableAutorepeat, unlike the other controls in this chapter, is not contained in
the XkbControlsRec structure, nor can it be enabled or disabled via the EnabledCon-
trols control. Instead, query and set DetectableAutorepeat using XkbGetDetectab-
leAutorepeat and XkbSetDetectableAutorepeat.

DetectableAutorepeat is a condition that applies to all keyboard devices for a client’s
connection to a given X server; it cannot be selectively set for some devices and not for
others. For this reason, none of the Xkb library functions involving DetectableAu-
torepeat involve a device specifier.

To determine whether or not the server supports DetectableAutorepeat, use XkbGet-
DetectableAutorepeat.

Bool XkbGetDetectableAutorepeat(display, supported_rtrn)
Display * display; /* connection to X server */
Bool * supported_rtrn; /* backfilled True if DetectableAutorepeat supported */

XkbGetDetectableAutorepeat queries the server for the current state of DetectableAu-
torepeat and waits for a reply. If supported_rtrn is not NULL, it backfills supported_rtrn
with True if the server supports DetectableAutorepeat, and False otherwise. Xkb-
GetDetectableAutorepeat returns the current state of DetectableAutorepeat for the
requesting client: True if DetectableAutorepeat is set, and False otherwise.

To set DetectableAutorepeat, use XkbSetDetectableAutorepeat. This request affects
all keyboard activity for the requesting client only; other clients still see the expected non-
detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutorepeat(display, detectable, supported_rtrn)
Display * display; /* connection to X server */
Bool detectable; /* True => set DetectableAutorepeat */
Bool * supported_rtrn; /* backfilled True if DetectableAutorepeat supported */

XkbSetDetectableAutorepeat sends a request to the server to set DetectableAutore-
peat on for the current client if detectable is True, and off it detectable is False; it then
waits for a reply. If supported_rtrn is not NULL, XkbSetDetectableAutorepeat backfills
supported_rtrn with True if the server supports DetectableAutorepeat, and False
if it does not. XkbSetDetectableAutorepeat returns the current state of DetectableAu-
torepeat for the requesting client: True if DetectableAutorepeat is set, and False
otherwise.

10.4 Controls for Keyboard Overlays (Overlay1 and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay is enabled. For example, a keyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, using the Overlay1 and
Overlay2 controls. When Overlay1 is enabled, all of the keys that are members of the
first keyboard overlay generate an alternate keycode. When Overlay2 is enabled, all of
the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Overlay1 and Overlay2 are boolean controls. As such, you may enable and disable
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them using either the EnabledControls control or the AutoReset control discussed in
section 10.1.1.

To specify the overlay to which a key belongs and the alternate keycode it should generate
when that overlay is enabled, assign it either the XkbKB_Overlay1 or XkbKB_Overlay2
key behaviors, as described in section 16.2.

10.5 Controls for Using the Mouse from the Keyboard

Using Xkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not simulation of the pointer device is active,
as well as configuring the default button; the MouseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the
EnabledControls control or the AutoReset control discussed in section 10.1.1. The
individual keys that simulate different aspects of the pointer device are determined by the
keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

The MouseKeys control allows a user to control all the mouse functions from the key-
board. When MouseKeys are enabled, all keys with MouseKeys actions bound to them
generate core pointer events instead of normal KeyPress and KeyRelease events.

The MouseKeys control has a single attribute, mk_dflt_btn that specifies the core button
number to be used by mouse keys actions that do not explicitly specify a button. There is
no convenience function for getting or setting the attribute; instead use XkbGetControls
and XkbSetControls (see sections 10.9 and 10.10).

Note MouseKeys can also be turned on and off by pressing the key combination necessary
to produce an XK_Pointer_EnableKeys keysym. The de facto default standard
for this is Shift+Alt+NumLock, but this may vary depending on the keymap.

10.5.2 The MouseKeysAccel Control

When the MouseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. When MouseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in the XkbSA_MovePtr action and
the following fields in the XkbControlsRec structure (see section 10.8).

Table 10.2  MouseKeysAccel Fields
Field Function
mk_delay Time (ms) between the initial key press and the first repeated motion event
mk_interval Time (ms) between repeated motion events
mk_time_to_max Number of events (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer reaches
mk_curve The ramp used to reach maximum pointer speed
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There are no convenience functions to query or change the attributes of the MouseKey-
sAccel control; instead use XkbGetControls and XkbSetControls (see sections 10.9 and
10.10).

The effects of the attributes of the MouseKeysAccel control depend on whether the
XkbSA_MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA_MovePtr action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if the XkbSA_MovePtr action specifies an absolute position for
the X direction, but a relative motion for the Y direction, the pointer accelerates in the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA_MovePtr action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. After mk_delay milliseconds, a second
motion event is generated, and another occurs every mk_interval milliseconds until the
user releases the key.

Between the time of the second motion event and mk_time_to_max intervals, the change
in pointer distance per interval increases with each interval. After mk_time_to_max inter-
vals have elapsed, the change in pointer distance per interval remains the same and is cal-
culated by multiplying the original distance specified in the action by mk_max_speed.

For example, if the XkbSA_MovePtr action specifies a relative motion in the X direction
of 5, mk_delay=160, mk_interval=40, mk_time_to_max=30, and mk_max_speed=30, the
following happens when the user presses the key:

• The pointer immediately moves 5 pixels in the X direction when the key is pressed.
• After 160 milliseconds (mk_delay), and every 40 milliseconds thereafter (mk_interval),

the pointer moves in the X direction.
• The distance in the X direction increases with each interval until 30 intervals

(mk_time_to_max) have elapsed.
• After 30 intervals, the pointer stops accelerating, and moves 150 pixels

(mk_max_speed * the original distance) every interval thereafter, until the key is
released.

The increase in pointer difference for each interval is a function of mk_curve. Events after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

Where action_delta is the relative motion specified by the XkbSA_MovePtr action,
mk_max_speed and mk_time_to_max are parameters to the MouseKeysAccel control,
and the curveFactor is computed using the MouseKeysAccelmk_curve parameter as fol-
lows:

d step( ) action_delta max_accel
steps_to_maxcurveFactor
------------------------------------------------------------ 

  stepcurveFactor××=

curveFactor(curve) 1 curve
1000
-------------+=
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With the result that a mk_curve of zero causes the distance moved to increase linearly
from action_delta to . A negative mk_curve causes an initial
sharp increase in acceleration that tapers off, and a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-
erated by the action approaches mk_time_to_max. The legal values for mk_curve are
between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

Figure 10.1 MouseKeys Acceleration

10.6 Controls for Better Keyboard Access by Physically Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard use
more effective for physically impaired people. All of these controls are boolean controls
and may be individually enabled and disabled, as well as configured to tune their specific
behavior. The behavior of these controls is based on the AccessDOS package1.

1.  AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.
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10.6.1 The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may be
impossible for people who need to use the controls. For example, a user who needs
SlowKeys (see section 10.6.6) may not even be able to start the graphical application, let
alone use it, if SlowKeys is not enabled. To allow easier access to some of the controls,
the AccessXKeys control provides a set of special key sequences similar to those avail-
able in AccessDOS.

When the AccessXKeys control is enabled, the user can turn controls on or off from the
keyboard by entering the following standard key sequences:

• Holding down a shift key by itself for eight seconds toggles the SlowKeys control.
• Pressing and releasing the left or right Shift key five times in a row, without any inter-

vening key events and with less than 30 seconds delay between consecutive presses,
toggles the state of the StickyKeys control.

• Simultaneously operating two or more modifier keys deactivates the StickyKeys
control.

When the AccessXKeys control is disabled, Xkb does not look for the above special key
sequences.

Some of these key sequences optionally generate audible feedback of the change in state,
as described in section 10.6.3, or XkbControlsNotify events, described in section
10.11.

10.6.2 The AccessXTimeout Control

In environments where computers are shared, features such as SlowKeys present a prob-
lem: if SlowKeys is on, the keyboard can appear to be unresponsive because keys are not
accepted until they are held for a certain period of time. To help solve this problem, Xkb
provides an AccessXTimeout control to automatically change the enabled/disabled state
of any boolean controls and to change the value of the AccessXKeys and AccessX-
Feedback control attributes if the keyboard is idle for a specified period of time.

When a timeout as specified by AccessXTimeout occurs and a control is consequently
modified, Xkb generates an XkbControlsNotify event. For more information on Xkb-
ControlsNotify events, refer to section 10.11.

Use XkbGetAccessXTimeout to query the current AccessXTimeout options for a key-
board device.

Bool XkbGetAccessXTimeout(display, device_spec, timeout_rtrn, ctrls_mask_rtrn,
ctrls_values_rtrn, options_mask_rtrn, options_values_rtrn)

Display * display; /* connection to X server */
unsigned int device_spec; /* device to query, or XkbUseCoreKbd */
unsigned short * timeout_rtrn; /* delay until AccessXTimeout, seconds */
unsigned int * ctrls_mask_rtrn; /* backfilled with controls to modify */
unsigned int * ctrls_values_rtrn; /* backfilled with on/off status for controls */
unsigned short * opts_mask_rtrn; /* backfilled with ax_options to modify */
unsigned short * opts_values_rtrn; /* backfilled with values for ax_options */

XkbGetAccessXTimeout sends a request to the X server to obtain the current values for the
AccessXTimeout attributes, waits for a reply, and backfills the values into the appropri-
ate arguments. The parameters opts_mask_rtrn and opts_values_rtrn are backfilled with
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the options to modify and the values for ax_options, which is a field in the XkbCon-
trolsRec structure (see section 10.8). XkbGetAccessXTimeout returns True if success-
ful; if a compatible version of the Xkb extension is not available in the server,
XkbGetAccessXTimeout returns False.

To configure the AccessXTimeout options for a keyboard device, use XkbSetAccessX-
Timeout.

Bool XkbSetAccessXTimeout(display, device_spec, timeout, ctrls_mask, ctrls_values,
opts_mask, opts_values)

Display * display; /* connection to X server */
unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned short timeout; /* seconds idle until AccessXTimeout occurs */
unsigned int ctrls_mask; /* boolean controls to modify */
unsigned int ctrls_values; /* new bits for controls selected by ctrls_mask */
unsigned short opts_mask; /* ax_options to change */
unsigned short opts_values; /* new bits for ax_options selected by opts_mask */

timeout specifies the number of seconds the keyboard must be idle before the controls are
modified. ctrls_mask specifies what controls are to be enabled or disabled, and
ctrls_values specifies whether those controls are to be enabled or disabled. The bit values
correspond to those for enabling and disabling boolean controls (see section 10.1.1). The
opts_mask field specifies which attributes of the AccessXKeys and AccessXFeedback
controls are to be changed, and opts_values specifies the new values for those options.
The bit values correspond to those for the ax_options field of an XkbDescRec (see section
10.8).

XkbSetAccessXTimeout sends a request to configure the AccessXTimeout control to the
server. It does not wait for a reply, and normally returns True. If a compatible version of
the Xkb extension is not available in the server, XkbSetAccessXTimeout returns False.

10.6.3 The AccessXFeedback Control

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. Use the
AccessXFeedback control to configure the specific types of operations that generate
feedback.

There is no convenience function for modifying the AccessXFeedback control, although
the feedback as a whole can be enabled or disabled just as other boolean controls are (see
section 10.1). Individual beep codes are turned on or off by modifying the following bits
in the ax_options field of an XkbControlsRec structure and using XkbSetControls (see
section 10.10):

Table 10.3  AccessXFeedback Masks
Action Beep Code ax_options bit
LED turned on High-pitched beep XkbAX_IndicatorFBMask
LED turned off Low-pitched beep XkbAX_IndicatorFBMask
More than one LED changed state Two high-pitched beeps XkbAX_IndicatorFBMask
Control turned on Rising tone XkbAX_FeatureFBMask
Control turned off Falling tone XkbAX_FeatureFBMask
More than one control changed stateTwo high-pitched beeps XkbAX_FeatureFBMask
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Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep fol-
lowed by a low-pitched beep instead of a continuous falling tone. Other implementations
can only ring the bell with one fixed pitch. In these cases, use the
XkbAX_DumbBellFBMask bit of ax_options to indicate that the bell can only ring with a
fixed pitch.

When any of the above feedbacks occur, Xkb may generate a XkbBellNotify event (see
section 9.4).

10.6.4 AccessXNotify Events

The server can generate XkbAccessXNotify events for some of the global keyboard
controls. The structure for the XkbAccessXNotify event type is as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbAccessXNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
int detail; /* XkbAXN_* */
KeyCode keycode; /* key of event */
int slowKeysDelay; /* current SlowKeys delay */
int debounceDelay; /* current debounce delay */

} XkbAccessXNotifyEvent;

The detail field describes what AccessX event just occurred and can be any of the values
in Table 10.4.

SlowKeys and BounceKeys about
to be turned on or off

Three high-pitched beeps XkbAX_SlowWarnFBMask

SlowKeys key pressed Medium-pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium-pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected Low-pitched beep XkbAX_SKRejectFBMask
Accepted SlowKeys key released Medium-pitched beep XkbAX_SKReleaseFBMask
BounceKeys key rejected Low-pitched beep XkbAX_BKRejectFBMask
StickyKeys key latched Low-pitched beep followed by

high-pitched beep
XkbAX_StickyKeysFBMask

StickyKeys key locked High-pitched beep XkbAX_StickyKeysFBMask
StickyKeys key unlocked Low-pitched beep XkbAX_StickyKeysFBMask

Table 10.4  AccessXNotify Events
detail Reason
XkbAXN_SKPress A key was pressed when SlowKeys was enabled.
XkbAXN_SKAccept A key was accepted (held longer than the SlowKeys delay).
XkbAXN_SKRelease An accepted SlowKeys key was released.
XkbAXN_SKReject A key was rejected (released before the SlowKeys delay expired).

Table 10.3  AccessXFeedback Masks
Action Beep Code ax_options bit
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The keycode field reports the keycode of the key for which the event occurred. If the
action is related to SlowKeys, the slowKeysDelay field contains the current SlowKeys
acceptance delay. If the action is related to BounceKeys, the debounceDelay field contains
the current BounceKeys debounce delay.

Selecting for AccessX Events

To receive XkbAccessXNotify events under all possible conditions, use XkbSelect-
Events (see section 4.3) and pass XkbAccesXNotifyMask in both bits_to_change and
values_for_bits.

To receive XkbStateNotify events only under certain conditions, use XkbSelectEvent-
Details using XkbAccessXNotify as the event_type and specifying the desired state
changes in bits_to_change and values_for_bits using mask bits from Table 10.5.

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events

The StickyKeys, RepeatKeys, and MouseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking, or unlocking of modifiers using Stick-
yKeys generates XkbStateNotify events as described in section 5.4. Repeating keys
generate normal KeyPress and KeyRelease events, though the auto-repeat can be
detected using DetectableAutorepeat (see section 10.3.3). Finally, MouseKeys gen-
erates pointer events identical to those of the core pointer device.

10.6.6 The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward the
key they want. Usually, the keys that are accidentally bumped are just hit for a very short
period of time. The SlowKeys control helps filter these accidental bumps by telling the
server to wait a specified period, called the SlowKeys acceptance delay, before delivering
key events. If the key is released before this period elapses, no key events are generated.
Users can then bump any number of keys on their way to the one they want without acci-
dentally getting those characters. Once they have reached the key they want, they can then

XkbAXN_BKAccept A key was accepted by BounceKeys.
XkbAXN_BKReject A key was rejected (pressed before the BounceKeys delay

expired).
XkbAXN_AXKWarning AccessXKeys is about to turn on/off StickyKeys or BounceKeys.

Table 10.5  AccessXNotify Event Details
XkbAccessXNotify Event Details Value Circumstances
XkbAXN_SKPressMask (1<<0) Slow key press notification wanted
XkbAXN_SKAcceptMask (1<<1) Slow key accept notification wanted
XkbAXN_SKRejectMask (1<<2) Slow key reject notification wanted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification wanted
XkbAXN_BKAcceptMask (1<<4) Bounce key accept notification wanted
XkbAXN_BKRejectMask (1<<5) Bounce key reject notification wanted
XkbAXN_AXKWarningMask (1<<6) AccessX warning notification wanted
XkbAXN_AllEventsMask (0x7f) All AccessX features notifications wanted

Table 10.4  AccessXNotify Events
detail Reason
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hold the desired key long enough for the computer to accept it. SlowKeys is a boolean
control with one configurable attribute.

When the SlowKeys control is active, the server reports the initial key press, subsequent
acceptance or rejection, and release of any key to interested clients by sending an appro-
priate AccessXNotify event (see section 10.6.4).

To get the SlowKeys acceptance delay for a keyboard device, use XkbGetSlowKeysDe-
lay.

Bool XkbGetSlowKeysDelay(display, device_spec, delay_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int * delay_rtrn; /* backfilled with SlowKeys delay, ms */

XkbGetSlowKeysDelay requests the attributes of the SlowKeys control from the server,
waits for a reply and backfills delay_rtrn with the SlowKeys delay attribute. Xkb-
GetSlowKeysDelay returns True if successful; if a compatible version of the Xkb exten-
sion is not available in the server, XkbGetSlowKeysDelay returns False.

To set the SlowKeys acceptance delay for a keyboard device, use XkbSetSlowKeysDelay.

Bool XkbSetSlowKeysDelay(display, device_spec, delay)
Display * display; /* connection to X server */
unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned int delay; /* SlowKeys delay, ms */

XkbSetSlowKeysDelay sends a request to configure the SlowKeys control to the server. It
does not wait for a reply, and normally returns True. Specifying a value of 0 for the delay
parameter causes XkbSetSlowKeys to generate a BadValue protocol error. If a compatible
version of the Xkb extension is not available in the server XkbSetSlowKeysDelay returns
False.

10.6.7 The BounceKeys Control

Some users may accidentally “bounce” on a key when they release it. They press it once,
then accidentally press it again after they release it. The BounceKeys control temporarily
disables a key after it has been pressed, effectively “debouncing” the keyboard. The
period of time the key is disabled after it is released is known as the BounceKeys delay.
BounceKeys is a boolean control.

When the BounceKeys control is active, the server reports acceptance or rejection of any
key to interested clients by sending an appropriate AccessXNotify event (see section
10.6.4).

Use XkbGetBounceKeysDelay to query the current BounceKeys delay for a keyboard
device.

Bool XkbGetBounceKeysDelay(display, device_spec, delay_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int * delay_rtrn; /* backfilled with bounce keys delay, ms */

XkbGetBounceKeysDelay requests the attributes of the BounceKeys control from the
server, waits for a reply, and backfills delay_rtrn with the BounceKeys delay attribute.
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XkbGetBounceKeysDelay returns True if successful; if a compatible version of the Xkb
extension is not available in the server XkbGetSlowKeysDelay returns False.

To set the BounceKeys delay for a keyboard device, use XkbSetBounceKeysDelay.

Bool XkbSetBounceKeysDelay(display, device_spec, delay)
Display * display; /* connection to X server */
unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned int delay; /* bounce keys delay, ms */

XkbSetBounceKeysDelay sends a request to configure the BounceKeys control to the
server. It does not wait for a reply and normally returns True. Specifying a value of zero
for the delay parameter causes XkbSetBounceKeysDelay to generate a BadValue protocol
error. If a compatible version of the Xkb extension is not available in the server, XkbSet-
BounceKeysDelay returns False.

10.6.8 The StickyKeys Control

Some people find it difficult or even impossible to press two keys at once. For example, a
one-fingered typist or someone using a mouth stick cannot press the Shift and 1 keys at the
same time. The StickyKeys control solves this problem by changing the behavior of the
modifier keys. With StickyKeys, the user can first press a modifier, release it, then press
another key. For example, to get an exclamation point on a PC-style keyboard, the user
can press the Shift key, release it, and then press the 1 key.

StickyKeys also allows users to lock modifier keys without requiring special locking
keys. When StickyKeys is enabled, a modifier is latched when the user presses it just
once. The user can press a modifier twice in a row to lock it, and then unlock it by pressing
it one more time.

When a modifier is latched, it becomes unlatched when the user presses a nonmodifier key
or a pointer button. For instance, to enter the sequence Shift+Control+Z the user could
press and release the Shift key to latch it, then press and release the Control key to latch it,
and finally press and release the Z key. Because the Control key is a modifier key, pressing
it does not unlatch the Shift key. Thus, after the user presses the Control key, both the
Shift and Control modifiers are latched. When the user presses the Z key, the effect is
as though the user had pressed Shift+Control+Z. In addition, because the Z key is not
a modifier key, the Shift and Control modifiers are unlatched.

Locking a modifier key means that the modifier affects any key or pointer button the user
presses until the user unlocks it or it is unlocked programmatically. For example, to enter
the sequence (“XKB”) on a keyboard where ‘(’ is a shifted ‘9’, ‘)’ is a shifted ‘0’, and ‘”’
is a shifted single quote, the user could press and release the Shift key twice to lock the
Shift modifier. Then, when the user presses the 9, ‘, x, k, b, ‘, and 0 keys in sequence, it
generates (“XKB”). To unlock the Shift modifier, the user can press and release the Shift
key.

StickyKeys is a boolean control with two separate attributes that may be individually
configured: one to automatically disable it, and one to control the latching behavior of
modifier keys.
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StickyKeys Options

The StickyKeys control has two options that can be accessed via the ax_options of an
XkbControlsRec structure (see section 10.8). The first option, TwoKeys, specifies
whether StickyKeys should automatically turn off when two keys are pressed at the
same time. This feature is useful for shared computers so people who do not want them do
not need to turn StickyKeys off if a previous user left StickyKeys on. The second
option, LatchToLock, specifies whether or not StickyKeys locks a modifier when
pressed twice in a row.

Use XkbGetStickyKeysOptions to query the current StickyKeys attributes for a keyboard
device.

Bool XkbGetStickyKeysOptions(display, device_spec, options_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int * options_rtrn; /* backfilled with StickyKeys option mask */

XkbGetStickyKeysOptions requests the attributes of the StickyKeys control from the
server, waits for a reply, and backfills options_rtrn with a mask indicating whether the
individual StickyKeys options are on or off. Valid bits in options_rtrn are:

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

XkbGetStickyKeysOptions returns True if successful; if a compatible version of the Xkb
extension is not available in the server XkbGetStickyKeysOptions returns False.

To set the StickyKeys attributes for a keyboard device, use XkbSetStickyKeysOptions.

Bool XkbSetStickyKeysOptions(display, device_spec, mask, values)
Display * display; /* connection to X server */
unsigned int device_spec; /* device to configure, or XkbUseCoreKbd */
unsigned int mask; /* selects StickyKeys attributes to modify */
unsigned int values; /* values for selected attributes */

XkbSetStickyKeysOptions sends a request to configure the StickyKeys control to the
server. It does not wait for a reply and normally returns True. The valid bits to use for
both the mask and values parameters are:

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

 If a compatible version of the Xkb extension is not available in the server, XkbSetStick-
yKeysOptions returns False.

10.7 Controls for General Keyboard Mapping

There are several controls that apply to the keyboard mapping in general. They control
handling of out-of-range group indices and how modifiers are processed and consumed in
the server. These are:

GroupsWrap
IgnoreGroupLock
IgnoreLockMods
InternalMods
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IgnoreGroupLock is a boolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set via transla-
tions in a client (for example, Alt<KeyPress>space) do not trigger if any modifiers
other than those specified by the translation are set. This results in problems in the user
interface when either NumLock or a secondary keyboard group is active. The Ignore-
LockMods and IgnoreGroupLock controls make it possible to avoid this behavior with-
out exhaustively specifying a grab for every possible modifier combination.

10.7.1 The GroupsWrap Control

The GroupsWrap control determines how illegal groups are handled on a global basis.
There are a number of valid keyboard sequences that can cause the effective group num-
ber to go out of range. When this happens, the group must be normalized back to a valid
number. The GroupsWrap control specifies how this is done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different algorithms; the
GroupsWrap control specifies which one is used:

• XkbRedirectIntoRange

All invalid group numbers are converted to a valid group number by taking the last
four bits of the GroupsWrap control and using them as the group index. If the
result is still out of range, Group one is used.

• XkbClampIntoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the highest
supported group; those less than one are mapped to group one.

• XkbWrapIntoRange

All invalid group numbers are converted to a valid group number using integer
modulus applied to the group index.

There are no convenience functions for manipulating the GroupsWrap control. Manipu-
late the GroupsWrap control via the groups_wrap field in the XkbControlsRec struc-
ture, then use XkbSetControls and XkbGetControls (see section 10.9 and section 10.10) to
query and change this control.

Note See also section 15.3.2 or a discussion of the related field, group_info, which also nor-
malizes a group under certain circumstances.

10.7.2 The IgnoreLockMods Control

The core protocol does not provide a way to exclude specific modifiers from grab calcula-
tions, with the result that locking modifiers sometimes have unanticipated side effects.

The IgnoreLockMods control specifies modifiers that should be excluded from grab cal-
culations. These modifiers are also not reported in any core events except KeyPress and
KeyRelease events that do not activate a passive grab and that do not occur while a grab
is active.
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Manipulate the IgnoreLockMods control via the ignore_lock field in the XkbCon-
trolsRec structure, then use XkbSetControls and XkbGetControls (see sections 10.9 and
10.10) to query and change this control. Alternatively, use XkbSetIgnoreLockMods.

To set the modifiers that, if locked, are not to be reported in matching events to passive
grabs, use XkbSetIgnoreLockMods.

Bool XkbSetIgnoreLockMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)

Display * display; /* connection to the X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int affect_real; /* mask of real modifiers affected by this call */
unsigned int real_values; /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers affected by this call */
unsigned int virtual_values;/* values for affected virtual modifiers (1=>set, 0=>unset) */

XkbSetIgnoreLockMods sends a request to the server to change the server’s Ignore-
LockMods control. affect_real and real_values are masks of real modifier bits indicating
which real modifiers are to be added and removed from the server’s IgnoreLockMods
control. Modifiers selected by both affect_real and real_values are added to the server’s
IgnoreLockMods control; those selected by affect_real but not by real_values are
removed from the server’s IgnoreLockMods control. Valid values for affect_real and
real_values consist of any combination of the eight core modifier bits: ShiftMask,
LockMask, ControlMask, Mod1Mask - Mod5Mask. affect_virtual and virtual_values are
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s IgnoreLockMods control. Modifiers selected by both
affect_virtual and virtual_values are added to the server’s IgnoreLockMods control;
those selected by affect_virtual but not by virtual_values are removed from the server’s
IgnoreLockMods control. See section 7.1 for a discussion of virtual modifier masks to
use in affect_virtual and virtual_values. XkbSetIgnoreLockMods does not wait for a reply
from the server. It returns True if the request was sent, and False otherwise.

10.7.3 The IgnoreGroupLock Control

The IgnoreGroupLock control is a boolean control with no attributes. If enabled, it
specifies that the locked state of the keyboard group should not be considered when acti-
vating passive grabs.

Because IgnoreGroupLock is a boolean control with no attributes, use the general bool-
ean controls functions (see section 10.1) to change its state.

10.7.4 The InternalMods Control

The core protocol does not provide any means to prevent a modifier from being reported
in events sent to clients; Xkb, however makes this possible via the InternalMods con-
trol. It specifies modifiers that should be consumed by the server and not reported to cli-
ents. When a key is pressed and a modifier that has its bit set in the InternalMods
control is reported to the server, the server uses the modifier when determining the actions
to apply for the key. The server then clears the bit, so it is not actually reported to the cli-
ent. In addition, modifiers specified in the InternalMods control are not used to deter-
mine grabs and are not used to calculate core protocol compatibility state.
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Manipulate the InternalMods control via the internal field in the XkbControlsRec
structure, using XkbSetControls and XkbGetControls (see sections10.9 and 10.10). Alter-
natively, use XkbSetServerInternalMods.

To set the modifiers that are consumed by the server before events are delivered to the cli-
ent, use XkbSetServerInternalMods.

Bool XkbSetServerInternalMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)

Display * display; /* connection to the X server */
unsigned int device_spec;‘ /* device ID, or XkbUseCoreKbd */
unsigned int affect_real; /* mask of real modifiers affected by this call */
unsigned int real_values; /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers affected by this call */
unsigned int virtual_values;/* values for affected virtual modifiers (1=>set, 0=>unset) */

XkbSetServerInternalMods sends a request to the server to change the internal modifiers
consumed by the server. affect_real and real_values are masks of real modifier bits indi-
cating which real modifiers are to be added and removed from the server’s internal modi-
fiers control. Modifiers selected by both affect_real and real_values are added to the
server’s internal modifiers control; those selected by affect_real but not by real_values are
removed from the server’s internal modifiers mask. Valid values for affect_real and
real_values consist of any combination of the eight core modifier bits: ShiftMask,
LockMask, ControlMask, Mod1Mask - Mod5Mask. affect_virtual and virtual_values are
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s internal modifiers control. Modifiers selected by both
affect_virtual and virtual_values are added to the server’s internal modifiers control; those
selected by affect_virtual but not by virtual_values are removed from the server’s internal
modifiers control. See section 7.1 for a discussion of virtual modifier masks to use in
affect_virtual and virtual_values. XkbSetServerInternalMods does not wait for a reply
from the server. It returns True if the request was sent and False otherwise.

10.8 The XkbControlsRec Structure

Many of the individual controls described in sections 10.1 through 10.7 may be manipu-
lated via convenience functions discussed in those sections. Some of them, however, have
no convenience functions. The XkbControlsRec structure allows the manipulation of
one or more of the controls in a single operation and to track changes to any of them in
conjunction with the XkbGetControls and XkbSetControls functions. This is the only way
to manipulate those controls that have no convenience functions.

The XkbControlsRec structure is defined as follows:

#define XkbMaxLegalKeyCode 255
#define XkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)

typedef struct {
unsigned char mk_dflt_btn; /* default button for keyboard driven mouse */
unsigned char num_groups; /* number of keyboard groups */
unsigned char groups_wrap; /* how to wrap out-of-bounds groups */
XkbModsRec internal; /* defines server internal modifiers */
XkbModsRec ignore_lock; /* modifiers to ignore when checking for grab */
unsigned int enabled_ctrls; /* 1 bit => corresponding boolean control enabled */
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unsigned short repeat_delay; /* ms delay until first repeat */
unsigned short repeat_interval; /* ms delay between repeats */
unsigned short slow_keys_delay; /* ms minimum time key must be down to be ok */
unsigned short debounce_delay; /* ms delay before key reactivated */
unsigned short mk_delay; /* ms delay to second mouse motion event */
unsigned short mk_interval; /* ms delay between repeat mouse events */
unsigned short mk_time_to_max; /* # intervals until constant mouse move */
unsigned short mk_max_speed; /* multiplier for maximum mouse speed */
short mk_curve; /* determines mouse move curve type */
unsigned short ax_options; /* 1 bit => Access X option enabled */
unsigned short ax_timeout; /* seconds until Access X disabled */
unsigned short axt_opts_mask; /* 1 bit => options to reset on Access X timeout */
unsigned short axt_opts_values; /* 1 bit => turn option on, 0=> off */
unsigned int axt_ctrls_mask; /* which bits in enabled_ctrls to modify */
unsigned int axt_ctrls_values; /* values for new bits in enabled_ctrls */
unsigned char per_key_repeat[XkbPerKeyBitArraySize]; /* per key auto repeat */

} XkbControlsRec, *XkbControlsPtr;

The general-purpose functions that work with the XkbControlsRec structure use a mask
to specify which controls are to be manipulated. Table 10.6 lists these controls, the masks
used to select them in the general function calls (which parameter), and the data fields in
the XkbControlsRec structure that comprise each of the individual controls. Also listed
are the bit used to turn boolean controls on and off and the section where each control is
described in more detail.

Table 10.6  Xkb Controls

Control Control Selection Mask
(which parameter)

Relevant XkbControlsRec
Data Fields

Boolean Control
enabled_ctrls bit

Secti
on

AccessXFeedback XkbAccessXFeedbackMask ax_options:
XkbAX_*FBMask

XkbAccessXFeedbackMask 10.6.3

AccessXKeys XkbAccessXKeysMask 10.6.1
AccessXTimeout XkbAccessXTimeoutMask ax_timeout

axt_opts_mask
axt_opts_values
axt_ctrls_mask
axt_ctrls_values

XkbAccessXTimeoutMask 10.6.2

AudibleBell XkbAudibleBellMask 9.2
AutoReset 10.1.2
BounceKeys XkbBounceKeysMask debounce_delay XkbBounceKeysMask 10.6.7
Detectable-
Autorepeat

10.3.3

EnabledControls XkbControlsEnabledMask enabled_ctrls Non-Boolean Control 10.1.1
GroupsWrap XkbGroupsWrapMask groups_wrap Non-Boolean Control 10.7.1
IgnoreGroupLock XkbIgnoreGroupLockMask 10.7.3
IgnoreLockMods XkbIgnoreLockModsMask ignore_lock Non-Boolean Control 5.1
InternalMods XkbInternalModsMask internal Non-Boolean Control 5.1
MouseKeys XkbMouseKeysMask mk_dflt_btn XkbMouseKeysMask 10.5.1
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Table 10.7 shows the actual values for the individual mask bits used to select controls for
modification and to enable and disable the control. Note that the same mask bit is used to
specify general modifications to the parameters used to configure the control (which), and
to enable and disable the control (enabled_ctrls). The anomalies in the table (no “ok” in
column) are for controls that have no configurable attributes; and for controls that are not
boolean controls and therefore cannot be enabled or disabled.

MouseKeysAccel XkbMouseKeysAccelMask mk_delay
mk_interval
mk_time_to_max
mk_max_speed
mk_curve

XkbMouseKeysAccelMask 10.5.2

Overlay1 XkbOverlay1Mask 10.4
Overlay2 XkbOverlay2Mask 10.4
PerKeyRepeat XkbPerKeyRepeatMask per_key_repeat Non-Boolean Control 10.3.1
RepeatKeys XkbRepeatKeysMask repeat_delay

repeat_interval
XkbRepeatKeysMask 10.3

SlowKeys XkbSlowKeysMask slow_keys_delay XkbSlowKeysMask 10.6.6
StickyKeys XkbStickyKeysMask ax_options:

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

XkbStickyKeysMask 10.6.8

Table 10.7  Controls Mask Bits

Mask Bit which or
changed_ctrls enabled_ctrls Value

XkbRepeatKeysMask ok ok (1L<<0)
XkbSlowKeysMask ok ok (1L<<1)
XkbBounceKeysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbMouseKeysMask ok ok (1L<<4)
XkbMouseKeysAccelMask ok ok (1L<<5)
XkbAccessXKeysMask ok ok (1L<<6)
XkbAccessXTimeoutMask ok ok (1L<<7)
XkbAccessXFeedbackMask ok ok (1L<<8)
XkbAudibleBellMask ok (1L<<9)
XkbOverlay1Mask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkbIgnoreGroupLockMask ok (1L<<12)
XkbGroupsWrapMask ok (1L<<27)
XkbInternalModsMask ok (1L<<28)
XkbIgnoreLockModsMask ok (1L<<29)
XkbPerKeyRepeatMask ok (1L<<30)
XkbControlsEnabledMask ok (1L<<31)
XkbAccessXOptionsMask ok ok (XkbStickyKeysMask |

XkbAccessXFeedbackMask)

Table 10.6  Xkb Controls

Control Control Selection Mask
(which parameter)

Relevant XkbControlsRec
Data Fields

Boolean Control
enabled_ctrls bit

Secti
on
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The individual fields of the XkbControlsRec structure are defined as follows.

mk_dflt_btn

mk_dflt_btn is an attribute of the MouseKeys control (see section 10.5). It specifies the
mouse button number to use for keyboard simulated mouse button operations. Its value
should be one of the core symbols Button1 - Button5.

num_groups

num_groups is not a part of any control, but is reported in the XkbControlsRec structure
whenever any of its components are fetched from the server. It reports the number of
groups the particular keyboard configuration uses and is computed automatically by the
server whenever the keyboard mapping changes.

groups_wrap

groups_wrap is an attribute of the GroupsWrap control (see section 10.7.1). It specifies
the handling of illegal groups on a global basis. Valid values for groups_wrap are shown
in Table 10.8.

When groups_wrap is set to XkbRedirectIntoRange, its four low-order bits specify
the index of the group to use.

internal

internal is an attribute of the InternalMods control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events are
reported. Valid values consist of any combination of the eight core modifier bits: Shift-
Mask, LockMask, ControlMask, Mod1Mask - Mod5Mask.

ignore_lock

ignore_lock is an attribute of the IgnoreLockMods control (see section 10.7.2). It speci-
fies modifiers to be ignored in grab calculations. Valid values consist of any combination
of the eight core modifier bits: ShiftMask, LockMask, ControlMask, Mod1Mask -
Mod5Mask.

enabled_ctrls

enabled_ctrls is an attribute of the EnabledControls control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the corresponding con-

XkbAllBooleanCtrlsMask ok (0x00001FFF)
XkbAllControlsMask ok (0xF8001FFF)

Table 10.8  GroupsWrap options (groups_wrap field)

groups_wrap symbolic name value
XkbWrapIntoRange (0x00)
XkbClampIntoRange (0x40)
XkbRedirectIntoRange (0x80)

Table 10.7  Controls Mask Bits

Mask Bit which or
changed_ctrls enabled_ctrls Value
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trol is enabled or disabled; a one bit means the control is enabled. The mask bits used to
enable these controls are listed in Table 10.7, using only those masks with “ok” in the
enabled_ctrls column.

repeat_delay and repeat_interval

repeat_delay and repeat_interval are attributes of the RepeatKeys control (see section
10.3.2). repeat_delay is the initial delay before a key begins repeating, in milliseconds;
repeat_interval is the delay between subsequent key events, in milliseconds.

slow_keys_delay

slow_keys_delay is an attribute of the SlowKeys control (see section 10.6.6). Its value
specifies the SlowKeys acceptance delay period in milliseconds before a key press is
accepted by the server.

debounce_delay

debounce_delay is an attribute of the BounceKeys control (see section 10.6.7). Its value
specifies the BounceKeys delay period in milliseconds for which the key is disabled after
having been pressed before another press of the same key is accepted by the server.

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve are attributes of
the MouseKeysAccel control. Refer to section 10.5.2 for a description of these fields and
the units involved.

ax_options

The ax_options field contains attributes used to configure two different controls, the
StickyKeys control (see section 10.6.8) and the AccessXFeedback control (see sec-
tion 10.6.3). The ax_options field is a bitmask and may include any combination of the
bits defined in Table 10.9.

Table 10.9  Access X Enable/Disable Bits (ax_options field)

Access X Control ax_options bit value
AccessXFeedback XkbAX_SKPressFBMask (1L<<0)

XkbAX_SKAcceptFBMask (1L << 1)
XkbAX_FeatureFBMask (1L << 2)
XkbAX_SlowWarnFBMask (1L << 3)
XkbAX_IndicatorFBMask (1L << 4)
XkbAX_StickyKeysFBMask (1L << 5)
XkbAX_SKReleaseFBMask (1L << 8)
XkbAX_SKRejectFBMask (1L << 9)
XkbAX_BKRejectFBMask (1L << 10)
XkbAX_DumbBellFBMask (1L << 11)

StickyKeys XkbAX_TwoKeysMask (1L << 6)
XkbAX_LatchToLockMask (1L << 7)
XkbAX_AllOptionsMask (0xFFF)
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The fields pertaining to each control are relevant only when the control is enabled (XkbAc-
cessXFeedbackMask or XkbStickyKeysMask bit is turned on in the enabled_cntrls
field).

Xkb provides a set of convenience macros for working with the ax_options field of an
XkbControlsRec structure:

#define XkbAX_NeedOption(c,w) ((c)->ax_options&(w))

The XkbAX_NeedOption macro is useful for determining whether a particular AccessX
option is enabled or not. It accepts a pointer to an XkbControlsRec structure and a valid
mask bit from Table 10.9. If the specified mask bit in the ax_options field of the controls
structure is set, the macro returns the mask bit. Otherwise, it returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAX_LatchToLockMask)

is nonzero if the latch to lock transition for latching keys is enabled, and zero if it is dis-
abled. Note that XkbAX_NeedOption only determines whether or not the particular capa-
bility is configured to operate; the XkbAccessXFeedbackMask bit must also be turned
on in enabled_ctrls for the capability to actually be functioning.

#define XkbAX_AnyFeedback(c) ((c)->enabled_ctrls&XkbAccessXFeedbackMask)

The XkbAX_AnyFeeback macro accepts a pointer to an XkbControlsRec structure and
tells whether the AccessXFeedback control is enabled or not. If the AccessXFeedback
control is enabled, the macro returns XkbAccessXFeedbackMask. Otherwise, it returns
zero.

#define XkbAX_NeedFeedback(c,w)
(XkbAX_AnyFeedback(c)&&XkbAX_NeedOption(c,w))

The XkbAX_NeedFeedback macro is useful for determining if both the AccessXFeed-
back control and a particular AccessX feedback option are enabled. The macro accepts a
pointer to an XkbControlsRec structure and a feedback option from the table above. If
both the AccessXFeedback control and the specified feedback option are enabled, the
macro returns True. Otherwise it returns False.

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeout, act_opts_mask, axt_opts_values, axt_ctrls_mask, and axt_ctrls_values are
attributes of the AccessXTimeout control. Refer to section 10.6.2 for a description of
these fields and the units involved.

per_key_repeat

The per_key_repeat field mirrors the auto_repeats field of the core protocol XKeyboard-
State structure: changing the auto_repeats field automatically changes per_key_repeat
and vice versa. It is provided for convenience and to reduce protocol traffic. For example,
to obtain the individual repeat key behavior as well as the repeat delay and rate, use Xkb-
GetControls. If the per_key_repeat were not in this structure, you would have to call both
XGetKeyboardControl and XkbGetControls to get this information. The bits correspond to
keycodes. The first seven keys (keycodes 1-7) are indicated in per_key_repeat[0], with bit
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position 0 (low order) corresponding to the fictitious keycode 0. Following array elements
correspond to 8 keycodes per element. A 1 bit indicates that the key is a repeating key.

10.9 Querying Controls

Use XkbGetControls to find the current state of Xkb server controls.

Status XkbGetControls(display, which, xkb)
Display * display; /* connection to X server */
unsigned long which; /* mask of controls requested */
XkbDescPtr xkb; /* keyboard description for controls information*/

XkbGetControls queries the server for the requested control information, waits for a reply,
and then copies the server’s values for the requested information into the ctrls structure of
the xkb argument. Only those components specified by the which parameter are copied.
Valid values for which are any combination of the masks listed in Table 10.7 that have
“ok” in the which column.

If xkb->ctrls is NULL, XkbGetControls allocates and initializes it before obtaining the val-
ues specified by which. If xkb->ctrls is not NULL, XkbGetControls modifies only those
portions of xkb->ctrls corresponding to the values specified by which.

XkbGetControls returns Success if successful; otherwise, it returns BadAlloc if it can-
not obtain sufficient storage, BadMatch if xkb is NULL or which is empty, or BadImple-
mentation.

To free the ctrls member of a keyboard description, use XkbFreeControls (see section
10.12)

The num_groups field in the ctrls structure is always filled in by XkbGetControls, regard-
less of which bits are selected by which.

10.10 Changing Controls

There are two ways to make changes to controls: either change a local copy keyboard
description and call XkbSetControls, or, to reduce network traffic, use an XkbCon-
trolsChangesRec structure and call XkbChangeControls.

To change the state of one or more controls, first modify the ctrls structure in a local copy
of the keyboard description and then use XkbSetControls to copy those changes to the X
server.

Bool XkbSetControls(display, which, xkb)
Display * display; /* connection to X server */
unsigned long which; /* mask of controls to change */
XkbDescPtr xkb; /* ctrls field contains new values to be set */

For each bit that is set in the which parameter, XkbSetControls sends the corresponding
values from the xkb->ctrls field to the server. Valid values for which are any combination
of the masks listed in Table 10.7 that have “ok” in the which column.

If xkb->ctrls is NULL, the server does not support a compatible version of Xkb, or the Xkb
extension has not been properly initialized, XkbSetControls returns False. Otherwise, it
sends the request to the X server and returns True.
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Note that changes to attributes of controls in the XkbControlsRec structure are apparent
only when the associated control is enabled, although the corresponding values are still
updated in the X server. For example, the repeat_delay and repeat_interval fields are
ignored unless the RepeatKeys control is enabled (that is, the X server’s equivalent of
xkb->ctrls has XkbRepeatKeyMask set in enabled_ctrls). It is permissible to modify the
attributes of a control in one call to XkbSetControls and enable the control in a subsequent
call. See section 10.1.1 for more information on enabling and disabling controls.

Note that the enabled_ctrls field is itself a control — the EnabledControls control. As
such, to set a specific configuration of enabled and disabled boolean controls, you must set
enabled_ctrls to the appropriate bits to enable only the controls you want and disable all
others, then specify the XkbControlsEnabledMask in a call to XkbSetControls.
Because this is somewhat awkward if all you want to do is enable and disable controls,
and not modify any of their attributes, a convenience function is also provided for this pur-
pose (XkbChangeEnabledControls, section 10.1.1).

10.10.1The XkbControlsChangesRec Structure

The XkbControlsChangesRec structure allows applications to track modifications to
an XkbControlsRec structure and thereby reduce the amount of traffic sent to the server.
The same XkbControlsChangesRec structure may be used in several successive modi-
fications to the same XkbControlsRec structure, then subsequently used to cause all of
the changes, and only the changes, to be propagated to the server. The XkbCon-
trolsChangesRec structure is defined as follows:

typedef struct _XkbControlsChanges {
unsigned int changed_ctrls; /* bits indicating changed control data */
unsigned int enabled_ctrls_changes; /* bits indicating enabled/disabled controls */
Bool  num_groups_changed; /* True if number of keyboard groups changed */

} XkbControlsChangesRec,*XkbControlsChangesPtr;

The changed_ctrls field is a mask specifying which logical sets of data in the controls
structure have been modified. In this context, modified means set, that is, if a value is set
to the same value it previously contained, it has still been modified, and is noted as
changed. Valid values for changed_ctrls are any combination of the masks listed in Table
10.7 that have “ok” in the changed_ctrls column. Setting a bit implies the corresponding
data fields from the “Relevant XkbControlsRec Data Fields” column in Table 10.6 have
been modified. The enabled_ctrls_changes field specifies which bits in the enabled_ctrls
field have changed. If the number of keyboard groups has changed, the
num_groups_changed field is set to True.

If you have an Xkb description with controls that have been modified and an XkbCon-
trolsChangesRec that describes the changes that have been made, the XkbChangeCon-
trols function provides a flexible method for updating the controls in a server to match
those in the changed keyboard description.

Bool XkbChangeControls(dpy, xkb, changes)
Display * dpy; /* connection to X server */
XkbDescPtr xkb; /* keyboard description with changed xkb->ctrls */
XkbControlsChangesPtr changes; /* which parts of xkb->ctrls have changed */

XkbChangeControls copies any controls fields specified by changes from the keyboard
description controls structure, xkb->ctrls, to the server specified by dpy.
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10.11 Tracking Changes to Keyboard Controls

Whenever a field in the controls structure changes in the server’s keyboard description,
the server sends an XkbControlsNotify event to all interested clients.To receive Xkb-
ControlsNotify events under all possible conditions, use XkbSelectEvents (see section
4.3) and pass XkbControlsNotifyMask in both bits_to_change and values_for_bits.

To receive XkbControlsNotify events only under certain conditions, use XkbSelect-
EventDetails using XkbControlsNotify as the event_type and specifying the desired
state changes in bits_to_change and values_for_bits using mask bits from Table 10.7.

The structure for the XkbControlsNotify event is defined as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbCompatMapNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed_ctrls; /* bits indicating which controls data have changed*/
unsigned int enabled_ctrls; /* controls currently enabled in server */
unsigned int enabled_ctrl_changes; /* bits indicating enabled/disabled controls */
int num_groups; /* current number of keyboard groups */
KeyCode keycode; /* != 0 => keycode of key causing change */
char event_type; /* Type of event causing change */
char req_major; /* major event code of event causing change */
char req_minor; /* minor event code of event causing change */

} XkbControlsNotifyEvent;

The changed_ctrls field specifies the controls components that have changed and consists
of bits taken from the masks defined in Table 10.7 with “ok” in the changed_ctrls column.

The controls currently enabled in the server are reported in the enabled_ctrls field. If any
controls were just enabled or disabled (that is, the contents of the enabled_ctrls field
changed), they are flagged in the enabled_ctrl_changes field. The valid bits for these
fields are the masks listed in Table 10.7 with “ok” in the enabled_ctrls column. The
num_groups field reports the number of groups bound to the key belonging to the most
number of groups and is automatically updated when the keyboard mapping changes.

If the change was caused by a request from a client, the keycode and event_type fields are
set to zero and the req_major and req_minor fields identify the request. The req_major
value is the same as the major extension opcode. Otherwise, event_type is set to the type of
event that caused the change (one of KeyPress, KeyRelease, DeviceKeyPress,
DeviceKeyRelease, ButtonPress or ButtonRelease), and req_major and
req_minor are undefined. If event_type is KeyPress, KeyRelease, DeviceKeyPress,
or DeviceKeyRelease, the keycode field is set to the key that caused the change. If
event_type is ButtonPress or ButtonRelease, keycode contains the button number.
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When a client receives an XkbControlsNotify event, it can note the changes in a
changes structure using XkbNoteControlsChanges.

void XkbNoteControlsChanges(changes, new, wanted)
XkbControlsChangesPtr changes; /* records changes indicated by new */
XkbControlsNotifyEvent * new; /* tells which things have changed */
unsigned int wanted; /* tells which parts of new to record in changes */

The wanted parameter is a bitwise inclusive OR of bits taken from the set of masks speci-
fied in Table 10.7 with “ok” in the changed_ctrls column. XkbNoteControlsChanges cop-
ies any changes reported in new and specified in wanted into the changes record specified
by old.

Use XkbGetControlsChanges to update a local copy of a keyboard description with the
changes previously noted by one or more calls to XkbNoteControlsChanges.

Status XkbGetControlsChanges(dpy, xkb, changes)
Display * dpy; /* connection to X server */
XkbDescPtr xkb; /* xkb->ctrls will be updated */
XkbNameChangesPtr changes; /* indicates which parts of xkb->ctrls to update */

XkbGetControlsChanges examines the changes parameter, queries the server for the nec-
essary information, and copies the results into the xkb->ctrls keyboard description. If the
ctrls field of xkb is NULL, XkbGetControlsChanges allocates and initializes it. To free the
ctrls field, use XkbFreeControls (see section 10.12).

XkbGetControlsChanges returns Success if successful and can generate BadAlloc,
BadImplementation, and BadMatch errors.

10.12 Allocating and Freeing an XkbControlsRec

The need to allocate an XkbControlsRec structure seldom arises; Xkb creates one when
an application calls XkbGetControls or a related function. For those situations where there
is not an XkbControlsRec structure allocated in the XkbDescRec, allocate one by call-
ing XkbAllocControls.

Status XkbAllocControls(xkb, which)
XkbDescPtr xkb; /* Xkb description in which to allocate ctrls rec */
unsigned int which; /* mask of components of ctrls to allocate */

XkbAllocControls allocates the ctrls field of the xkb parameter, initializes all fields to zero,
and returns Success. If the ctrls field is not NULL, XkbAllocControls simply returns Suc-
cess. If xkb is NULL, XkbAllocControls reports a BadMatch error. If the ctrls field could
not be allocated, it reports a BadAlloc error.

The which mask specifies the individual fields of the ctrls structure to be allocated and can
contain any of the valid masks defined in Table 10.7. Because none of the currently exist-
ing controls have any structures associated with them, which is currently of little practical
value in this call.
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To free memory used by the ctrls member of an XkbDescRec structure, use XkbFree-
Controls:

void XkbFreeControls(xkb, which, free_all)
XkbDescPtr xkb; /* Xkb description in which to free controls components */
unsigned int which; /* mask of components of ctrls to free */
Bool free_all; /* True => free everything + ctrls itself */

XkbFreeControls frees the specified components of the ctrls field in the xkb keyboard
description and sets the corresponding structure component values to NULL or zero. The
which mask specifies the fields of ctrls to be freed and can contain any of the controls
components specified in Table 10.7.

If free_all is True, XkbFreeControls frees every non-NULL structure component in the
controls, frees the XkbControlsRec structure referenced by the ctrls member of xkb, and
sets ctrls to NULL.

10.13 The Miscellaneous Per-client Controls

You can configure the boolean per-client controls which affect the state reported in button
and key events. See section 12.1.1, 12.3, 12.5, and 16.3.11 of the XKB Protocol specifica-
tion for more details.

To get the current values of the per-client controls, use XkbGetPerClientControls.

Bool XkbGetPerClientControls(dpy, ctrls)
Display * dpy; /* connection to X server */
unsigned int * ctrls; /* 1 bit => corresponding control is on */

XkbGetPerClientControls backfills ctrls with the per-client control attributes for this
particular client. It returns True if successful, and False otherwise.

To change the current values of the per-client control attributes, use XkbSetPerClient-
Controls.

Bool XkbSetPerClientControls(dpy, ctrls)
Display * dpy; /* connection to X server */
unsigned int change; /* 1 bit => change control */
unsigned int * value; /* 1 bit => control on */

XkbSetPerClientControls changes the per-client values for the controls selected by change
to the corresponding value in value. Legal values for change and value are:
XkbPCF_GrabsUseXKBStateMask, XkbPCF_LookupStateWhenGrabbed, and
XkbPCF_SendEventUsesXKBState. More than one control may be changed at one time by
OR-ing the values together. XkbSetPerClientControls backfills value with the per-cli-
ent control attributes for this particular client. It returns True if successful, and False
otherwise.
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11 X Library Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. Chapter 10 discusses functions used to modify controls affecting the
behavior of the server portion of the Xkb extension. This chapter discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; these
controls are known as Library Controls.

All of the Library Controls are boolean flags that may be enabled and disabled. The con-
trols can be divided into several categories:

• Controls affecting general string lookups
• Controls affecting compose processing
• Controls affecting event delivery

There are two types of string lookups performed by XLookupString. The first type
involves translating a single keycode into a string; the controls in the first category affect
this type of lookup. The second type involves translating a series of keysyms into a string;
the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all of the
controls. However, an implementation may choose not to support the semantics associated
with the controls that deal with compose processing. In this case, a program that accesses
these controls should still function normally; however, the feedback that would normally
occur with the controls enabled may be missing.

11.1 Controls Affecting Keycode-to-String Translation

The first type of string lookups, which are here called simple string lookups, involves
translating a single keycode into a string. Because these simple lookups involve only a
single keycode, all of the information needed to do the translation is contained in the key-
board state in a single event. The controls affecting simple string lookups are:

ForceLatin1Lookup
ConsumeLookupMods
LevelOneUsesShiftAndLock

11.1.1 ForceLatin1Lookup

If the ForceLatin1Lookup control is enabled, XLookupString only returns strings using
the Latin1 character set. If ForceLatin1Lookup is not enabled, XLookupString can
return characters that are not in the Latin1 set. By default, this control is disabled, allow-
ing characters outside of the Latin1 set to be returned.

11.1.2 ConsumeLookupMods

Simple string lookups in XLookupString involve two different translation phases. The first
phase translates raw device keycodes to individual keysyms. The second phase attempts to
map the resulting keysym into a string of one or more characters. In the first phase, some
of the modifiers are normally used to determine the appropriate shift level for a key.

The ConsumeLookupMods control determines whether or not XLookupString consumes
the modifiers it uses during the first phase of processing (mapping a keycode to a key-
sym). When a modifier is consumed, it is effectively removed from the working copy of
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the keyboard state information XLookupString is using and appears to be unset for the
remainder of the processing.

If the ConsumeLookupMods control is enabled, XLookupString does not use the modifi-
ers used to translate the keycode of the event to a keysym when it is determining the string
associated with a keysym. For example, assume the keymap for the ‘A’ key only contains
the shift modifier and the ConsumeLookupMods control is enabled. If a user presses the
Shift key and the A key while the Num_Lock key is locked, XLookupString uses the Shift
modifier when mapping the keycode for the ‘a’ key to the keysym for ‘A’; subsequently, it
only uses the NumLock modifier when determining the string associated with the keysym
‘A’.

If the ConsumeLookupMods control is not enabled, XLookupString uses all of the event
modifiers to determine the string associated with a keysym. This behavior mirrors the
behavior of XLookupString in the core implementation.

The ConsumeLookupMods control is unset by default. For more information on modifier
consumption, refer to Chapter 12.

11.1.3 AlwaysConsumeShiftAndLock

The AlwaysConsumeShiftAndLock control, if enabled, forces XLookupString to con-
sume the Shift and Lock modifiers when processing all keys, even if the definition for
the key type does not specify these modifiers. The AlwaysConsumeShiftAndLock con-
trol is unset by default. See section 15.2 for a discussion of key types.

11.2 Controls Affecting Compose Processing

The second type of string lookup performed by XLookupString involves translating a
series of keysyms into a string. Because these lookups can involve more than one key
event, they require XLookupString to retain some state information between successive
calls. The process of mapping a series of keysyms to a string is known as compose pro-
cessing. The controls affecting compose processing are:

ConsumeKeysOnComposeFail
ComposeLED
BeepOnComposeFail

Because different vendors have historically used different algorithms to implement com-
pose processing, and these algorithms may be incompatible with the semantics required
by the Xkb compose processing controls, implementation of the compose processing con-
trols is optional in an Xkb implementation.

11.2.1 ConsumeKeysOnComposeFail

Some compose processing algorithms signal the start of a compose sequence by a key
event meaning “start compose”.1The subsequent key events should normally result in a
valid composition yielding a valid translation to a string. If the subsequent key events do
not have a valid translation, some decision must be made about what to do with the key
events that were processed while attempting the compose. The ConsumeKeysOnCom-

1.  Another possibility is to have the compose processing simply be the result of a finite state acceptor; a compose
sequence would never fail for a properly written finite state acceptor.
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poseFail control allows a client to specify what happens with the key events XLookup-
String has been considering when it reaches a dead end in a compose sequence.

If the ConsumeKeysOnComposeFail control is set, all keys associated with a failed
compose sequence should be consumed (discarded). If the ConsumeKeysOnCompose-
Fail control is not set, the key events associated with a failed compose sequence should
be processed as a normal sequence of key events.

The ConsumeKeysOnComposeFail control is disabled by default.

11.2.2 ComposeLED

The ComposeLED control allows a client to specify whether or not an indicator should be
set and cleared to provide feedback when compose processing is in progress. The control
does not specify which indicator should be used; the mapping for this is up to the individ-
ual implementation. If the ComposeLED control is enabled, it specifies that an indicator
should be set when a compose sequence is in progress and cleared when one is not in
progress. The ComposeLED control is disabled by default.

While the Xkb extension does not specify the type of type of indicator to be used when the
ComposeLED control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named indicator is used for this purpose, the recommended
name is “Compose”. Note that some implementations may use an unnamed, custom hard-
ware LED for this purpose.

11.2.3 BeepOnComposeFail

The BeepOnComposeFail control allows a client to specify whether or not a bell should
be activated to provide feedback when a compose sequence fails. The control does not
specify the type of bell that should be used; the mapping for this is up to the individual
implementation. If the BeepOnComposeFail control is enabled, it specifies that a bell
should be activated when a compose sequence fails. The BeepOnComposeFail control is
disabled by default. If implemented, the bell should be activated using XkbBell or XkbDe-
viceBell.

While the Xkb extension does not specify the type of bell to be used when the BeepOn-
ComposeFail control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named bell is used for this purpose, the recommended name is
“ComposeFail”.

11.3 Controls Effecting Event Delivery

11.3.1 IgnoreNewKeyboards

When Xkb is initialized, it implicitly forces requests for NewKeyboardNotify events.
These events may be used by the Xkb library extension internally; they are normally trans-
lated into core protocol MappingNotify events before being passed to the client. While
delivering the event to the client is appropriate in most cases, it is not appropriate for some
clients that maintain per-key data structures. This is because once the server has sent a
NewKeyboardNotify event, it is free to send the client events for all keys in the new
range and that range may be outside of the per-key data structures the client is maintain-
ing.
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The IgnoreNewKeyboards control, if enabled, prevents Xkb from mapping NewKey-
boardNotify events to core MappingNotify events and passing them to the client. The
control is initially disabled.

11.4 Manipulating the Library Controls

The Library Controls are manipulated using functions that deal with bitmasks to indicate
which controls to manipulate. The controls are identified by the masks defined in Table
11.1.

11.4.1 Determining Which Library Controls are Implemented

To determine which Library Controls are actually implemented, use XkbXlibControlsIm-
plemented.

unsigned int XkbXlibControlsImplemented(display)
Display * display; /* connection to X server */

XkbXlibControlsImplemented returns a bitmask indicating the controls actually imple-
mented in the Xkb library and is composed of an inclusive OR of bits from Table 11.1.

11.4.2 Determining the State of the Library Controls

To determine the current state of the Library Controls, use XkbGetXlibControls.

unsigned int XkbGetXlibControls(display)
Display * display; /* connection to X server */

XkbGetXlibControls returns the current state of the Library Controls as a bit mask that is
an inclusive OR of the control masks from Table 11.1 for the controls that are enabled. For
the optional compose processing controls, the fact that a control is enabled does not imply
that it is actually implemented.

11.4.3 Changing the State of the Library Controls

To change the state of the Library Controls, use XkbSetXlibControls.

Bool XkbSetXlibControls(display, bits_to_change, values_for_bits)
Display * display; /* connection to X server */
unsigned long bits_to_change; /* selects controls to be modified */
unsigned long values_for_bits; /* turns selected controls on (1) or off (0) */

Table 11.1  Library Control Masks

Library Control Mask Value
XkbLC_ForceLatin1Lookup (1 << 0)
XkbLC_ConsumeLookupMods (1 << 1)
XkbLC_AlwaysConsumeShiftAndLock (1 << 2)
XkbLC_IgnoreNewKeyboards (1 << 3)
XkbLC_ConsumeKeysOnComposeFail (1 << 29)
XkbLC_ComposeLED (1 << 30)
XkbLC_BeepOnComposeFail (1 << 31)
XkbLC_AllControls (0xc0000007)
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XkbSetXlibControls modifies the state of the controls selected by bits_to_change; only the
controls selected by bits_to_change are modified. If the bit corresponding to a control is
on in bits_to_change and also on in values_for_bits, the control is enabled. If the bit corre-
sponding to a control is on in bits_to_change but off in values_for_bits, the control is dis-
abled. bits_to_change should be an inclusive OR of bits from Table 11.1.
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12 Interpreting Key Events

Xkb provides functions to help developers interpret key events without having to directly
interpret Xkb data structures. Xkb also modifies the behavior of several core X library
functions.

12.1 Effects of Xkb on the Core X Library

When support for Xkb is built into the X library, the XOpenDisplay function looks for a
compatible version of Xkb on the server. If it finds a compatible version, it initializes the
extension and enables implicit support for Xkb in a number of X library functions. This
makes it possible for clients to take advantage of nearly all Xkb features without having to
be rewritten or even recompiled, if they are built with shared libraries. This implicit sup-
port is invisible to most clients, but it can have side effects, so the extension includes ways
to control or disable it.

12.1.1 Effects of Xkb on Event State

Because XOpenDisplay initializes Xkb, some events contain an Xkb description of the
keyboard state instead of that normally used by the core protocol. See section 17.1.1 for
more information about the differences between Xkb keyboard state and that reported by
the core protocol.

12.1.2 Effects of Xkb on MappingNotify Events

When Xkb is missing or disabled, the X library tracks changes to the keyboard mapping
using MappingNotify events. Whenever the keyboard mapping is changed, the server
sends all clients a MappingNotify event to report the change. When a client receives a
MappingNotify event, it is supposed to call XRefreshKeyboardMapping to update the
keyboard description used internally by the X library.

The X Keyboard Extension uses XkbMapNotify and XkbNewKeyboardNotify events
to track changes to the keyboard mapping. When an Xkb-aware client receives either
event, it should call XkbRefreshKeyboardMapping to update the keyboard description
used internally by the X library. To avoid duplicate events, the X server does not send core
protocol MappingNotify events to a client that has selected for XkbMapNotify events.

The implicit support for Xkb selects for XkbMapNotify events. This means that clients
that do not explicitly use Xkb but that are using a version of the X library that has implicit
support for Xkb do not receive MappingNotify events over the wire. Clients that were
not written with Xkb in mind do not recognize or properly handle the new Xkb events, so
the implicit support converts them to MappingNotify events that report approximately
the same information, unless the client has explicitly selected for the Xkb version of the
event.

An Xkb-capable X server does not send events from keys that fall outside the legal range
of keycodes expected by that client. Once the server sends a client an XkbNewKeyboard-
Notify event, it reports events from all keys because it assumes that any client that has
receieved an XkbNewKeyboardNotify event expects key events from the new range of
keycodes. The implicit support for Xkb asks for XkbNewKeyboardNotify events, so the
range of keycodes reported to the client might vary without the client’s knowledge. Most
clients don’t really care about the range of legal keycodes, but some clients maintain
information about each key and might have problems with events that come from unex-
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pected keys. Such clients can set the XkbLC_IgnoreNewKeyboards library control (see
section 11.3.1) to prevent the implicit support from requesting notification of changes to
the legal range of keycodes.

12.1.3 X Library Functions Affected by Xkb

The following X library functions are modified by Xkb:

XKeycodeToKeysym
XKeysymToKeycode
XLookupKeysym
XLookupString
XRefreshKeyboardMapping
XRebindKeysym

The implicit support for Xkb replaces a number of X library functions with versions that
understand and use the X Keyboard Extension. In most cases, the semantics of the new
versions are identical to those of the old, but there are occasional visible differences. This
section lists all of the functions that are affected and the differences in behavior, if any,
that are visible to clients.

The XKeycodeToKeysym function reports the keysym associated with a particular index
for a single key. The index specifies a column of symbols in the core keyboard mapping
(that is, as reported by the core protocol GetKeyboardMapping request). The order of the
symbols in the core mapping does not necessarily correspond to the order of the symbols
used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycode function reports a keycode to which a particular keysym is
bound. When Xkb is missing or disabled, this function looks in each column of the core
keyboard mapping in turn and returns the lowest numbered key that matches in the lowest
numbered group. When Xkb is present, this function uses the Xkb ordering for symbols
instead.

The XLookupKeysym function reports the symbol in a specific column of the key associ-
ated with an event. Whether or not Xkb is present, the column specifies an index into the
core symbol mapping.

The XLookupString function reports the symbol and string associated with a key event,
taking into account the keycode and keyboard state as reported in the event. When Xkb is
disabled or missing, XLookupString uses the rules specified by the core protocol and
reports only ISO Latin-1 characters. When Xkb is present, XLookupString uses the
explicit keyboard group, key types, and rules specified by Xkb. When Xkb is present,
XLookupString is allowed, but not required, to return strings in character sets other than
ISO Latin-1, depending on the current locale. If any key bindings are defined, XLookup-
String does not use any consumed modifiers (see sections 11.1.2 and 15.2) to determine
matching bindings.

The XRefreshKeyboardMapping function updates the X library’s internal representation of
the keyboard to reflect changes reported via MappingNotify events. When Xkb is miss-
ing or disabled, this function reloads the entire modifier map or keyboard mapping. When
Xkb is present, the implicit Xkb support keeps track of the changed components reported
by each XkbMapNotify event and updates only those pieces of the keyboard description
that have changed. If the implicit support has not noted any keyboard mapping changes,
XRefreshKeyboardMapping updates the entire keyboard description.
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The XRebindKeysym function associates a string with a keysym and a set of modifiers.
Xkb does not directly change this function, but it does affect the way that the state
reported in the event is compared to the state specified to XRebindKeysym. When Xkb is
missing or disabled, XLookupString returns the specified string if the modifiers in the
event exactly match the modifiers from this call. When Xkb is present, any modifiers used
to determine the keysym are consumed and are not used to look up the string.

12.2 Xkb Event and Keymap Functions

To find the keysym bound to a particular key at a specified group and shift level, use
XkbKeycodeToKeysym.

KeySym XkbKeycodeToKeysym(dpy, kc, group, level)
Display * dpy; /* connection to X server */
KeyCode kc; /* key of interest */
unsigned int group; /* group of interest */
unsigned int level; /* shift level of interest */

XkbKeycodeToKeysym returns the keysym bound to a particular group and shift level for a
particular key on the core keyboard. If kc is not a legal keycode for the core keyboard, or if
group or level are out of range for the specified key, XkbKeycodeToKeysym returns NoSym-
bol.

To find the set of modifiers bound to a particular keysym on the core keyboard, use
XkbKeysymToModifiers.

unsigned int XkbKeysymToModifiers(dpy, ks)
Display * dpy; /* connection to X server */
KeySym ks; /* keysym of interest */

XkbKeysymToModifiers finds the set of modifiers currently bound to the keysym ks on the
core keyboard. The value returned is the mask of modifiers bound to the keysym ks. If no
modifiers are bound to the keysym, XkbKeysymToModifiers returns zero; otherwise, it
returns the inclusive OR of zero or more of the following: ShiftMask, ControlMask,
LockMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

Use XkbLookupKeySym to find the symbol associated with a key for a particular state.

Bool XkbLookupKeySym(dpy, key, state, mods_rtrn, sym_rtrn)
Display * dpy; /* connection to X server */
KeyCode key; /* key for which symbols are to be found */
unsigned int state; /* state for which symbol should be found */
unsigned int * mods_rtrn; /* backfilled with unconsumed modifiers */
KeySym * sym_rtrn; /* backfilled with symbol associated with key + state */

XkbLookupKeySym is the equivalent of the core XLookupKeySym function. For the core
keyboard, given a keycode key and an Xkb state state, XkbLookupKeySym returns the sym-
bol associated with the key  in sym_rtrn and the list of modifiers that should still be
applied in mods_rtrn. The state parameter is the state from a KeyPress or KeyRelease
event. XkbLookupKeySym returns True if it succeeds.
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Use XkbLookupKeyBinding to find the string bound to a key by XRebindKeySym.
XkbLookupKeyBinding is the equivalent of the core XLookupString function.

int XkbLookupKeyBinding(dpy, sym, state, buf, nbytes, extra_rtrn)
Display * dpy; /* connection to server */
KeySym sym; /* symbol to be looked up */
unsigned int state; /* state for which string is to be looked up */
char * buf; /* buffer into which returned string is written */
int nbytes; /* size of buffer in bytes */
int * extra_rtrn; /* backfilled with number bytes overflow */

XRebindKeysym binds an ASCII string to a specified keysym, so that the string and key-
sym are returned when the key is pressed and a specified list of modifiers are also being
held down. XkbLookupKeyBinding returns in buf the string associated with the keysym
sym and modifier state state. buf is NULL terminated unless there’s an overflow. If the
string returned is larger than nbytes, a count of bytes that does not fit into the buffer is
returned in extra_rtrn. XkbTranslateKeySym returns the number of bytes that it placed
into buf.

To find the string and symbol associated with a keysym for a given keyboard state, use
XkbTranslateKeySym.

int XkbTranslateKeySym(dpy, sym_inout, mods, buf, nbytes, extra_rtrn)
Display * dpy; /* connection to X server */
KeySym * sym_inout; /* symbol to be translated; result of translation */
unsigned int mods; /* modifiers to apply to sym_inout */
char * buf; /* buffer into which returned string is written */
int nbytes; /* size of buffer in bytes */
int * extra_rtrn; /* number of bytes overflow*/

XkbTranslateKeySym applies the transformations specified in mods to the symbol speci-
fied by sym_inout. It returns in buf the string, if any, associated with the keysym for the
current locale. If the transformations in mods changes the keysym, sym_inout is updated
accordingly. If the string returned is larger than nbytes, a count of bytes that does not fit
into the buffer is returned in extra_rtrn. XkbTranslateKeySym returns the number of bytes
it placed into buf.

To update the keyboard description that is internal to the X library, use XkbRefreshKey-
boardMapping.

Status XkbRefreshKeyboardMapping(event)
XkbMapNotifyEvent * event; /* event initiating remapping */

XkbRefreshKeyboardMapping is the Xkb equivalent of the core XRefreshKeyboardMap-
ping function. It requests that the X server send the current key mapping information to
this client. A client usually invokes XkbRefreshKeyboardMapping after receiving an
XkbMapNotify event. XkbRefreshKeyboardMapping returns Success if it succeeds and
BadMatch if the event is not an Xkb event.

The XkbMapNotify event can be generated when some client calls XkbSetMap,
XkbChangeMap, XkbGetKeyboardByName, or any of the standard X library functions that
change the keyboard mapping or modifier mapping.
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To translate a keycode to a key symbol and modifiers, use XkbTranslateKeyCode.

Booll XkbTranslateKeyCode(xkb, key, mods, mods_rtrn, keysym_rtrn)
XkbDescPtr xkb; /* keyboard description to use for translation */
KeyCode key; /* keycode to translate */
unsigned int mods; /* modifiers to apply when translating key */
unsigned int * mods_rtrn; /* backfilled with unconsumed modifiers */
KeySym * keysym_rtrn; /* keysym resulting from translation */

mods_rtrn is backfilled with the modifiers consumed by the translation process. mods is a bit-
wise inclusive OR of the legal modifier masks: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.The AlwaysConsume-
ShiftAndLock library control (see section 11.1.3), if enabled, causes XkbTranslateKeyCode
to consume shift and lock. XkbTranslateKeyCode returns True if the translation resulted in
a keysym, and False if it resulted in NoSymbol.
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13 Keyboard Geometry

The Xkb description of a keyboard includes an optional keyboard geometry that describes
the physical appearance of the keyboard. Keyboard geometry describes the shape, loca-
tion, and color of all keyboard keys or other visible keyboard components such as indica-
tors. The information contained in a keyboard geometry is sufficient to allow a client
program to draw an accurate two-dimensional image of the keyboard.

You can retrieve a keyboard geometry from an X server that supports Xkb, or you can
allocate it from scratch and initialize it in a client program. The keyboard geometry need
not have any correspondence with the physical keyboard that is connected to the X server.

Geometry measurements are specified in mm/10 units. The origin (0,0) is in the top left cor-
ner of the keyboard image. A component’s own origin is also its upper left corner. In some
cases a component needs to be drawn rotated. For example, a special keyboard may have a
section of keys arranged in rows in a rectangular area, but the entire rectangle may not be
in alignment with the rest of the keyboard, and instead, it is rotated from horizontal by
30o. Rotation for a geometry object is specified in 1/10

o increments about its origin. An
example of a keyboard with rotated sections is shown in Figure 13.1.

Figure 131  Rotated Keyboard Sections

Some geometry components include a priority, which indicates the order in which over-
lapping objects should be drawn. Objects should be drawn in order from highest priority
(0) to lowest (255).

The keyboard geometry’s top-level description is stored in a XkbGeometryRec structure.
This structure contains three types of information:

1. Lists of items, not used to draw the basic keyboard, but indexed by the geometry
descriptions that comprise the entire keyboard geometry (colors, geometry proper-
ties, key aliases, shapes)

2. A number of singleton items that describe the keyboard as a whole (keyboard
name, width and height, a color for the keyboard as a whole, and a color for key-
board key labels)

3. A list of the keyboard’s sections and nonkey doodads

The top-level geometry is described in more detail in the following.

The lists of items used by components of the keyboard geometry description is as follows:

Rotated Sections
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• The top-level keyboard geometry description includes a list of up to MaxColors (32)
color names. A color name is a string whose interpretation is not specified by Xkb.
The XkbColorRec structure provides a field for this name as well as a pixel field.
The pixel field is a convenient place for an application to store a pixel value or color
definition, if it needs to. All other geometry data structures refer to colors using their
indices in this global list.

• The top-level keyboard geometry description includes a list of geometry properties.
A geometry property associates an arbitrary string with an equally arbitrary name.
Geometry properties can be used to provide hints to programs that display images of
keyboards, but they are not interpreted by Xkb. No other geometry structures refer to
geometry properties. As an example of a possible use of properties, consider the
pause/break key on most PC keyboards: the “break” symbol is usually on the front of
the key and is often a different color. A program might set a property to:
LBL_PAUS = “{Pause/top/black,Break/front/red}”
and use the property information to draw the key with a front label as well as a top
label.

• The top-level keyboard geometry description includes a list of key aliases (see Chapter
18). Key aliases allow the keyboard layout designer to assign multiple key names to a
single key.

Note Key aliases defined in the geometry component of a keyboard mapping override those
defined in the keycodes component of the server database, which are stored in the
XkbNamesRec (xkb->names). Therefore, consider the key aliases defined by the
geometry before considering key aliases supplied by the keycodes.

• The top-level keyboard geometry description includes a list of shapes; other keyboard
components refer to shapes by their index in this list. A shape consists of an arbitrary
name of type Atom and one or more closed-polygon outlines. All points in an outline
are specified relative to the origin of its enclosing shape, that is, whichever shape that
contains this outline in its list of outlines. One outline is the primary outline. The pri-
mary outline is by default the first outline, or it can be optionally specified by the pri-
mary field in the XkbShapeRec structure. A keyboard display application can
generate a simpler but still accurate keyboard image by displaying only the primary
outlines for each shape. Nonrectangular keys must include a rectangular approxima-
tion as one of the outlines associated with the shape. The approximation is not nor-
mally displayed but can be used by very simple keyboard display applications to
generate a recognizable but degraded image of the keyboard.

The XkbGeometryRec top-level geometry description contains the following information
that pertains to the keyboard as a whole:

• A keyboard symbolic name of type Atom to help users identify the keyboard.
• The width and height of the keyboard, in mm/10. For nonrectangular keyboards, the

width and height describe the smallest bounding box that encloses the outline of the
keyboard.

• The base color of the keyboard is the predominant color on the keyboard and is used
as the default color for any components whose color is not explicitly specified.

• The label color is the color used to draw the labels on most of the keyboard keys.
• The label font is a string that describes the font used to draw labels on most keys; label

fonts are arbitrary strings, because Xkb does not specify the format or name space for
font names.

The keyboard is subdivided into named sections of related keys and doodads. The sections
and doodads on the keyboard are listed in the XkbGeometryRec top-level keyboard
geometry description. A section is composed of keys that are physically together and logi-
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cally related. Figure 13.2 shows a keyboard that is divided into four sections. A doodad
describes some visible aspect of the keyboard that is not a key and is not a section.

Figure 13.2  Keyboard with Four Sections

13.1 Shapes and Outlines

A shape, used to draw keyboard components and stored in a XkbShapeRec structure, has:

• An arbitrary name of type Atom.
• Bounds (two x and y coordinates) that describe the corners of a rectangle containing

the shape’s top surface outline.
• A list of one or more outlines (described below).
• Optional pointers to a primary and an approximation outline (described below). If

either of these pointers is NULL, the default primary/approximation outline is the first
one in the list of outlines for the shape.

An outline, stored in a XkbOutlineRec structure, is a list of one or more points that
describes a single closed-polygon, as follows:

• A list with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

• A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

• A list of three or more points describes an arbitrary polygon. If necessary, the polygon
is automatically closed by connecting the last point in the list with the first.

• A nonzero value for the corner_radius field specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape. Points in
an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate a simple
but still accurate keyboard image by displaying only the primary outlines for each shape.
The default primary outline is the first in a shape’s list of outlines. If the primary field of
the XkbShapeRec structure is not NULL, it points to the primary outline. A rectangular
approximation must be included for nonrectangular keys as one of the outlines associated
with the shape; the approximation is not normally displayed but can be used by very sim-
ple keyboard display applications to generate a recognizable but degraded image of the
keyboard.

Editing

Function

Alpha

Keypad
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13.2 Sections

As previously noted, a keyboard is subdivided into sections of related keys. Each section
has its own coordinate system — if a section is rotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before
rotation. The components that make up a section, stored in a XkbSectionRec, include:

• An arbitrary name of type Atom.
• A priority, to indicate drawing order. 0 is the highest priority, 255 the lowest.
• Origin of the section, relative to the origin of the keyboard.
• The width and height and the angle of rotation.
• A list of rows. A row is a list of horizontally or vertically adjacent keys. Horizontal

rows parallel the (prerotation) top of the section, and vertical rows parallel the (prerota-
tion) left of the section. All keys in a horizontal row share a common top coordinate; all
keys in a vertical row share a left coordinate. Figure 13.3 shows the alpha section from
the keyboard shown in Figure 13.2, divided into rows. Rows and keys are defined
below.

Figure 13.3  Rows in a Section

• An optional list of doodads; any type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of the sec-
tions that contain them. Priority for doodads in a section is relative to the other compo-
nents of the section, not to the keyboard as a whole.

• An optional overlay with a name of type Atom and a list of overlay rows (described
below).

• Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the entire section.

13.3 Rows and Keys

A row description (XkbRowRec) consists of the coordinates of its origin relative to its
enclosing section, a flag indicating whether the row is horizontal or vertical, and a list of
keys in the row.

A key description (XkbKeyRec) consists of a key name, a shape, a key color, and a gap.
The key name should correspond to one of the keys named in the keyboard names descrip-
tion, the shape specifies the appearance of the key, and the key color specifies the color of
the key (not the label on the key; the label color is stored in the XkbGeometryRec). Keys
are normally drawn immediately adjacent to one another from left to right (or top to bot-
tom) within a row. The gap field specifies the distance between a key and its predecessor.

Row 1
Row 2
Row 3
Row 4
Row 5
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13.4 Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names
of arbitrary length. The only doodad name whose interpretation is specified by Xkb is
“Edges”, which, if present, describes the outline of the entire keyboard.

Each doodad’s origin is stored in fields named left and top, which are the coordinates of
the doodad’s origin relative to its enclosing object, whether it be a section or the top-level
keyboard. The priority for doodads that are listed in the top-level geometry is relative to
the other doodads listed in the top-level geometry and the sections listed in the top-level
geometry. The priority for doodads listed in a section are relative to the other components
of the section. Each doodad is stored in a structure with a type field, which specifies the
type of doodad.

Xkb supports five types of doodads:

• An indicator doodad describes one of the physical keyboard indicators. Indicator
doodads specify the shape of the indicator, the indicator color when it is lit (on_color)
and the indicator color when it is dark (off_color).

• An outline doodad describes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

• A solid doodad describes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color, and angle of rotation about the
doodad origin at which they should be drawn.

• A text doodad describes a text label somewhere on the keyboard. Text doodads specify
the label string, the font and color to use when drawing the label, and the angle of rota-
tion of the doodad about its origin.

• A logo doodad is a catch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn. If a keyboard display program recognizes
the symbolic name, it can draw something appropriate within the bounding region of
the shape specified in the doodad. If the symbolic name does not describe a recogniz-
able image, it should draw an outline using the specified shape, outline, and angle of
rotation. The Xkb extension does not specify the interpretation of logo names.

The structures these doodads are stored in and the values of the type fields are shown in
Table 13.1.

13.5 Overlay Rows and Overlay Keys

An overlay row (XkbOverlayRowRec) contains a pointer to the row it overlays and a list
of overlay keys.

Each overlay key definition (XkbOverlayKeyRec) indicates a key that can yield multiple
keycodes and consists of a field named under, which specifies the primary name of the

Table 13.1  Doodad Types

Doodad Structure Type
indicator doodad XkbIndicatorDoodadRec XkbIndicatorDoodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbTextDoodadRec XkbTextDoodad
logo doodad XkbLogoDoodadRec XkbLogoDoodad
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key and a field named over, which specifies the name for the key when the overlay key-
code is selected. The key specified in under must be a member of the section that contains
the overlay key definition, while the key specified in over must not be.

13.6 Drawing a Keyboard Representation

To draw a representation of the keyboard, draw in the following order:

Draw the top-level keyboard as a rectangle, using its width and height.
For each component (section or doodad) of the top-level geometry, in priority order:

If component is a section
For each row, in the order it appears in the section

Draw keys in the order they appear in the row
Draw doodads within the section in priority order.

Else draw doodad
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13.7 Geometry Data Structures

In the following figures, a solid arrow denotes a pointer to an array of structures or a sin-
gleton structure. A dotted arrow denotes an index or a pointer into the array.

Figure 13.4  Xkb Geometry Data Structures
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Figure 13.5  Xkb Geometry Data Structures (Doodads)
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Figure 13.6  Xkb Geometry Data Structures (Overlays)
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unsigned short num_key_aliases; /* number of key aliases in the key */
XkbPropertyPtr properties; /* properties array */
XkbColorPtr colors; /* colors array */
XkbShapePtr shapes; /* shapes array */
XkbSectionPtr sections; /* sections array */
XkbDoodadPtr doodads; /* doodads array */
XkbKeyAliasPtr key_aliases; /* key aliases array */

} XkbGeometryRec *XkbGeometryPtr;

The doodads array is only for doodads not contained in any of the sections that has its own
doodads. The key aliases contained in the key_aliases array take precedence over any
defined in the keycodes component of the keyboard description.

typedef struct _XkbProperty {
char * name; /* property name */
char * value; /* property value */

} XkbPropertyRec,*XkbPropertyPtr;

typedef struct _XkbColor {
unsigned int pixel; /* color */
char * spec; /* color name */

} XkbColorRec,*XkbColorPtr;

typedef struct _XkbKeyAliasRec {
char real[XkbKeyNameLength]; /* real name of the key */
char alias[XkbKeyNameLength]; /* alias for the key */

} XkbKeyAliasRec,*XkbKeyAliasPtr;

typedef struct _XkbPoint { /* x,y coordinates */
short x;
short y;

} XkbPointRec, *XkbPointPtr;

typedef struct _XkbOutline {
unsigned short num_points; /* number of points in the outline */
unsigned short sz_points; /* size of the points array */
unsigned short corner_radius; /* draw corners as circles with this radius */
XkbPointPtr points; /* array of points defining the outline */

} XkbOutlineRec, *XkbOutlinePtr;

typedef struct _XkbBounds {
short x1,y1; /* upper left corner of the bounds, in mm/10 */
short x2,y2; /* lower right corner of the bounds, in mm/10 */

} XkbBoundsRec, *XkbBoundsPtr;

typedef struct _XkbShape {
Atom name; /* shape’s name */
unsigned short num_outlines; /* number of outlines for the shape */
unsigned short sz_outlines; /* size of the outlines array */
XkbOutlinePtr outlines; /* array of outlines for the shape */
XkbOutlinePtr approx; /* pointer into the array to the approximating outline */
XkbOutlinePtr primary; /* pointer into the array to the primary outline */
XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */

} XkbShapeRec, *XkbShapePtr;
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If approx and/or primary is NULL, the default value is used. The default primary outline is
the first element in the outlines array, as is the default approximating outline.

typedef struct _XkbKey { /* key in a row */
XkbKeyNameRec name; /* key name */
short gap; /* gap in mm/10 from previous key in row */
unsigned char shape_ndx; /* index of shape for key */
unsigned char color_ndx; /* index of color for key body */

} XkbKeyRec, *XkbKeyPtr;

typedef struct _XkbRow { /* row in a section */
short top; /* top coordinate of row origin, relative to section’s origin */
short left; /* left coordinate of row origin, relative to section’s origin */
unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; /* size of the keys array */
int vertical; /* True=>vertical row, False=>horizontal row */
XkbKeyPtr keys; /* array of keys in the row*/
XkbBoundsRec bounds; /* bounding box for the row */

} XkbRowRec, *XkbRowPtr;

top and left are in mm/10.

typedef struct _XkbOverlayRec {
Atom name; /* overlay name */
XkbSectionPtr section_under; /* the section under this overlay */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short sz_rows; /* size of the rows array */
XkbOverlayRowPtr rows; /* array of rows in the overlay */
XkbBoundsPtr bounds; /* bounding box for the overlay */

} XkbOverlayRec,*XkbOverlayPtr;

typedef struct _XkbOverlayRow {
unsigned short row_under; /* index into the row under this overlay row */
unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; /* size of the keys array */
XkbOverlayKeyPtr keys; /* array of keys in the overlay row */

} XkbOverlayRowRec,*XkbOverlayRowPtr;

row_under is an index into the array of rows in the section under this overlay. The section
under this overlay row is the one pointed to by section_under in this overlay row’s
XkbOverlayRec.

typedef struct _XkbOverlayKey {
XkbKeyNameRec over; /* name of this overlay key */
XkbKeyNameRec under; /* name of the key under this overlay key */

} XkbOverlayKeyRec,*XkbOverlayKeyPtr;

typedef struct _XkbSection {
Atom name; /* section name */
 unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate of section origin */
short left; /* left coordinate of row origin */
unsigned short width; /* section width, in mm/10 */
unsigned short height; /* section height, in mm/10 */
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short angle; /* angle of section rotation, counterclockwise */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short num_doodads; /* number of doodads in the doodads array */
unsigned short num_overlays; /* number of overlays in the overlays array */
unsigned short sz_rows; /* size of the rows array */
unsigned short sz_doodads; /* size of the doodads array */
unsigned short sz_overlays; /* size of the overlays array */
XkbRowPtr rows; /* section rows array */
XkbDoodadPtr doodads; /* section doodads array */
XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
XkbOverlayPtr overlays; /* section overlays array */

} XkbSectionRec, *XkbSectionPtr;

top and left are the origin of the section, relative to the origin of the keyboard, in mm/10.
angle is in 1/10 degrees.

DoodadRec Structures

The doodad arrays in the XkbGeometryRec and the XkbSectionRec may contain any
of the doodad structures and types shown in Table 13.1.

The doodad structures form a union:

typedef union _XkbDoodad {
        XkbAnyDoodadRec any;
        XkbShapeDoodadRec shape;
        XkbTextDoodadRec text;
        XkbIndicatorDoodadRec indicator;
        XkbLogoDoodadRec logo;
} XkbDoodadRec, *XkbDoodadPtr;

The top and left coordinates of each doodad are the coordinates of the origin of the doodad
relative to the keyboard’s origin if the doodad is in the XkbGeometryRec doodad array,
and with respect to the section’s origin if the doodad is in a XkbSectionRec doodad
array. The color_ndx or on_color_ndx and off_color_ndx fields are color indices into the
XkbGeometryRec’s color array and are the colors to draw the doodads with. Similarly, the
shape_ndx fields are indices into the XkbGeometryRec’s shape array.

typedef struct _XkbShapeDoodad {
Atom name; /* doodad name */
unsigned char type; /* XkbOutlineDoodad or XkbSolidDoodad*/
unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, in mm/10 */
short left; /* left coordinate, in mm/10 */
short angle; /* angle of rotation, clockwise, in 1/10 degrees */
unsigned short color_ndx; /* doodad color */
unsigned short shape_ndx; /* doodad shape */

} XkbShapeDoodadRec, *XkbShapeDoodadPtr;

typedef struct _XkbTextDoodad {
Atom name; /* doodad name */
unsigned char type; /* XkbTextDoodad */
unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, in mm/10 */
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short left; /* left coordinate, in mm/10 */
short angle; /* angle of rotation, clockwise, in 1/10 degrees */
short width; /* width in mm/10 */
short height; /* height in mm/10 */
unsigned short color_ndx; /* doodad color */
char * text; /* doodad text */
char * font; /* arbitrary font name for doodad text */

} XkbTextDoodadRec, *XkbTextDoodadPtr;

typedef struct _XkbIndicatorDoodad {
Atom name; /* doodad name */
unsigned char type; /* XkbIndicatorDoodad */
unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, in mm/10 */
short left; /* left coordinate, in mm/10 */
short angle; /* angle of rotation, clockwise, in 1/10 degrees */
unsigned short shape_ndx; /* doodad shape */
unsigned short on_color_ndx; /* color for doodad if indicator is on */
unsigned short off_color_ndx; /* color for doodad if indicator is off */

} XkbIndicatorDoodadRec, *XkbIndicatorDoodadPtr;

typedef struct _XkbLogoDoodad {
Atom name; /* doodad name */
unsigned char type; /* XkbLogoDoodad */
unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, in mm/10 */
short left; /* left coordinate, in mm/10 */
short angle; /* angle of rotation, clockwise, in 1/10 degrees */
unsigned short color_ndx; /* doodad color */
unsigned short shape_ndx; /* doodad shape */
char * logo_name; /* text for logo */

} XkbLogoDoodadRec, *XkbLogoDoodadPtr

13.8 Getting Keyboard Geometry From the Server

You can load a keyboard geometry as part of the keyboard description returned by Xkb-
GetKeyboard. However, if a keyboard description has been previously loaded, you can
instead obtain the geometry by calling the XkbGetGeometry. In this case, the geometry
returned is the one associated with the keyboard whose device ID is contained in the key-
board description.

To load a keyboard geometry if you already have the keyboard description, use XkbGet-
Geometry.

Status XkbGetGeometry(dpy, xkb)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description that contains the ID for the keyboard

and into which the geometry should be loaded */

XkbGetGeometry can return BadValue, BadImplementation, BadName, BadAlloc,
or BadLength errors or Success if it succeeds.
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It is also possible to load a keyboard geometry by name. The X server maintains a data-
base of keyboard components (see Chapter 20). To load a keyboard geometry description
from this database by name, use XkbGetNamedGeometry.

Status XkbGetNamedGeometry(dpy, xkb, name)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description into which the geometry should be loaded */
Atom name; /* name of the geometry to be loaded */

XkbGetNamedGeometry can return BadName if the name cannot be found.

13.9 Using Keyboard Geometry

Xkb provides a number of convenience functions to help use a keyboard geometry. These
include functions to return the bounding box of a shape’s top surface and to update the
bounding box of a shape row or section.

A shape is made up of a number of outlines. Each outline is a polygon made up of a num-
ber of points. The bounding box of a shape is a rectangle that contains all the outlines of
that shape.

Figure 13.7  Key Surface, Shape Outlines, and Bounding Box

To determine the bounding box of the top surface of a shape, use XkbComputeShapeTop.

Bool XkbComputeShapeTop(shape, bounds_rtrn)
XkbShapePtr shape; /* shape to be examined */
XkbBoundsPtr bounds_rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTop returns a BoundsRec that contains two x and y coordinates. These
coordinates describe the corners of a rectangle that contains the outline that describes the
top surface of the shape. The top surface is defined to be the approximating outline if the
approx field of shape is not NULL. If approx is NULL, the top surface is defined as the last
outline in the shape’s array of outlines. XkbComputeShapeTop returns False if shape is
NULL or if there are no outlines for the shape; otherwise, it returns True.

A ShapeRec contains a BoundsRec that describes the bounds of the shape. If you add or
delete an outline to or from a shape, the bounding box must be updated. To update the
bounding box of a shape, use XkbComputeShapeBounds.

Bool XkbComputeShapeBounds(shape)
XkbShapePtr shape; /* shape to be examined */

XkbComputeShapeBounds updates the BoundsRec contained in the shape by examining
all the outlines of the shape and setting the BoundsRec to the minimum x and minimum
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y, and maximum x and maximum y values found in those outlines. XkbComputeShape-
Bounds returns False if shape is NULL or if there are no outlines for the shape; otherwise,
it returns True.

 If you add or delete a key to or from a row, or if you update the shape of one of the keys
in that row, you may need to update the bounding box of that row. To update the bounding
box of a row, use XkbComputeRowBounds.

Bool XkbComputeRowBounds(geom, section, row)
XkbGeometryPtr geom; /* geometry that contains the section */
XkbSectionPtr section; /* section that contains the row */
XkbRowPtr row; /* row to be examined and updated */

XkbComputeRowBounds checks the bounds of all keys in the row and updates the bound-
ing box of the row if necessary. XkbComputeRowBounds returns False if any of the argu-
ments is NULL; otherwise, it returns True.

 If you add or delete a row to or from a section, or if you change the geometry of any of the
rows in that section, you may need to update the bounding box for that section. To update
the bounding box of a section, use XkbComputeSectionBounds.

Bool XkbComputeSectionBounds(geom, section)
XkbGeometryPtr geom; /* geometry that contains the section */
XkbSectionPtr section; /* section to be examined and updated */

XkbComputeSectionBounds examines all the rows of the section and updates the bounding
box of that section so that it contains all rows. XkbComputeSectionBounds returns False
if any of the arguments is NULL; otherwise, it returns True.

Keys that can generate multiple keycodes may be associated with multiple names. Such
keys have a primary name and an alternate name. To find the alternate name by using the
primary name for a key that is part of an overlay, use XkbFindOverlayForKey.

char * XkbFindOverlayForKey(geom, section, under)
XkbGeometryPtr geom; /* geometry that contains the section */
XkbSectionPtr section; /* section to be searched for matching keys */
char * under. /* primary name of the key to be considered */

XkbFindOverlayForKey uses the primary name of the key, under, to look up the alternate
name, which it returns.

13.10 Adding Elements to a Keyboard Geometry

Xkb provides functions to add a single new element to the top-level keyboard geometry.
In each case the num_ * fields of the corresponding structure is incremented by 1. These
functions do not change sz_* unless there is no more room in the array. Some of these
functions fill in the values of the element’s structure from the arguments. For other func-
tions, you must explicitly write code to fill the structure’s elements.

The top-level geometry description includes a list of geometry properties. A geometry
property associates an arbitrary string with an equally arbitrary name. Programs that dis-
play images of keyboards can use geometry properties as hints, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.
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To add one property to an existing keyboard geometry description, use XkbAddGeomPro-
perty.

XkbPropertyPtr XkbAddGeomProperty(geom, name, value)
XkbGeometryPtr geom; /* geometry to be updated */
char * name; /* name of the new property */
char * value; /* value for the new property */

XkbAddGeomProperty adds one property with the specified name and value to the key-
board geometry specified by geom. XkbAddGeomProperty returns NULL if any of the
parameters is empty or if it was not able to allocate space for the property. To allocate
space for an arbitrary number of properties, use the XkbAllocGeomProps function.

To add one key alias to an existing keyboard geometry description, use XkbAddGeomKey-
Alias.

XkbKeyAliasPtr XkbAddGeomKeyAlias(geom, alias, real)
XkbGeometryPtr geom; /* geometry to be updated */
char * alias; /* alias to be added */
char * real; /* real name to be bound to the new alias */

XkbAddGeomKeyAlias adds one key alias with the value alias to the geometry geom, and
associates it with the key whose real name is real. XkbAddGeomKeyAlias returns NULL if
any of the parameters is empty or if it was not able to allocate space for the alias. To allo-
cate space for an arbitrary number of aliases, use the XkbAllocGeomKeyAliases function.

To add one color name to an existing keyboard geometry description, use XkbAddGeom-
Color.

XkbColorPtr XkbAddGeomColor(geom, spec, pixel)
XkbGeometryPtr geom; /* geometry to be updated */
char * spec; /* color to be added */
unsigned int pixel; /* color to be added */

XkbAddGeomColor adds the specified color name and pixel to the specified geometry
geom. The top-level geometry description includes a list of up to MaxColors (32) color
names. A color name is a string whose interpretation is not specified by Xkb and neither is
the pixel value’s interpretation. All other geometry data structures refer to colors using
their indices in this global list or pointers to colors in this list. XkbAddGeomColor returns
NULL if any of the parameters is empty or if it was not able to allocate space for the color.
To allocate space for an arbitrary number of colors to a geometry, use the XkbAllocGeom-
Colors function.

To add one outline to an existing shape, use XkbAddGeomOutline.

XkbOutlinePtr XkbAddGeomOutline(shape, sz_points)
XkbShapePtr shape; /* shape to be updated */
int sz_points; /* number of points to be reserved */

An outline consists of an arbitrary number of points. XkbAddGeomOutline adds an outline
to the specified shape by reserving sz_points points for it. The new outline is allocated and
zeroed. XkbAddGeomOutline returns NULL if any of the parameters is empty or if it was
not able to allocate space. To allocate space for an arbitrary number of outlines to a shape,
use XkbAllocGeomOutlines.
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To add a shape to a keyboard geometry, use XkbAddGeomShape.

XkbShapePtr XkbAddGeomShape(geom, name, sz_outlines)
XkbGeometryPtr geom; /* geometry to be updated */
Atom name; /* name of the new shape */
int sz_outlines; /* number of outlines to be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an arbi-
trary number of outlines. XkbAddGeomShape adds a shape to a geometry geom by allocat-
ing space for sz_outlines outlines for it and giving it the name specified by name. If a
shape with name name already exists in the geometry, a pointer to the existing shape is
returned. XkbAddGeomShape returns NULL if any of the parameters is empty or if it was
not able to allocate space. To allocate space for an arbitrary number of geometry shapes,
use XkbAllocGeomShapes.

To add one key at the end of an existing row of keys, use XkbAddGeomKey.

XkbKeyPtr XkbAddGeomKey(row)
XkbRowPtr row; /* row to be updated */

Keys are grouped into rows. XkbAddGeomKey adds one key to the end of the specified
row. The key is allocated and zeroed. XkbAddGeomKey returns NULL if row is empty or if
it was not able to allocate space for the key. To allocate space for an arbitrary number of
keys to a row, use XkbAllocGeomKeys.

To add one section to an existing keyboard geometry, use XkbAddGeomSection.

XkbSectionPtr XkbAddGeomSection(geom, name, sz_rows, sz_doodads, sz_overlays)
XkbGeometryPtr geom; /* geometry to be updated */
Atom name; /* name of the new section */
int sz_rows; /* number of rows to reserve in the section */
int sz_doodads; /* number of doodads to reserve in the section */
int sz_overlays; /* number of overlays to reserve in the section */

A keyboard geometry contains an arbitrary number of sections. XkbAddGeomSection adds
one section to an existing keyboard geometry geom. The new section contains space for
the number of rows, doodads, and overlays specified by sz_rows, sz_doodads, and
sz_overlays. The new section is allocated and zeroed and given the name specified by
name. If a section with name name already exists in the geometry, a pointer to the existing
section is returned. XkbAddGeomSection returns NULL if any of the parameters is empty or
if it was not able to allocate space for the section. To allocate space for an arbitrary num-
ber of sections to a geometry, use XkbAllocGeomSections.

To add a row to a section, use XkbAddGeomRow.

XkbRowPtr XkbAddGeomRow(section, sz_keys)
XkbSectionPtr section; /* section to be updated */
int sz_keys; /* number of keys to be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRow adds one row to the specified section. The newly created row contains
space for the number of keys specified in sz_keys. They are allocated and zeroed, but other-
wise uninitialized. XkbAddGeomRow returns NULL if any of the parameters is empty or if
it was not able to allocate space for the row. To allocate space for an arbitrary number of
rows to a section, use the XkbAllocGeomRows function.
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To add one doodad to a section of a keyboard geometry or to the top-level geometry, use
XkbAddGeomDoodad.

XkbDoodadPtr XkbAddGeomDoodad(geom, section, name)
XkbGeometryPtr geom; /* geometry to which the doodad is added */
XkbSectionPtr section; /* section, if any, to which the doodad is added */
Atom name; /* name of the new doodad */

A doodad describes some visible aspect of the keyboard that is not a key and is not a sec-
tion. XkbAddGeomDoodad adds a doodad with name specified by name to the geometry
geom if section is NULL or to the section of the geometry specified by section if section is
not NULL. XkbAddGeomDoodad returns NULL if any of the parameters is empty or if it
was not able to allocate space for the doodad. If there is already a doodad with the name
name in the doodad array for the geometry (if section is NULL) or the section (if section is
non-NULL), a pointer to that doodad is returned. To allocate space for an arbitrary number
of doodads to a section, use the XkbAllocGeomSectionDoodads function. To allocate
space for an arbitrary number of doodads to a keyboard geometry, use the XkbAllocGeom-
Doodads function.

To add one overlay to a section, use XkbAddGeomOverlay.

XkbOverlayPtr XkbAddGeomOverlay(section, name, sz_rows)
XkbSectionPtr section; /* section to which an overlay will be added */
Atom name; /* name of the overlay */
int sz_rows; /* number of rows to reserve in the overlay */

XkbAddGeomOverlay adds an overlay with the specified name to the specified section.
The new overlay is created with space allocated for sz_rows rows. If an overlay with name
name already exists in the section, a pointer to the existing overlay is returned.
XkbAddGeomOverlay returns NULL if any of the parameters is empty or if it was not able
to allocate space for the overlay. To allocate space for an arbitrary number of overlays to a
section, use the XkbAllocGeomOverlay function.

To add a row to an existing overlay, use XkbAddGeomOverlayRow.

XkbOverlayRowPtr XkbAddGeomOverlayRow(overlay, row_under, sz_keys)
XkbOverlayPtr overlay; /* overlay to be updated */
XkbRowPtr row_under; /* row to be overlayed in the section overlay overlays */
int sz_keys; /* number of keys to reserve in the row */

XkbAddGeomOverlayRow adds one row to the overlay. The new row contains space for
sz_keys keys. If row_under specifies a row that doesn’t exist on the underlying section,
XkbAddGeomOverlayRow returns NULL and doesn’t change the overlay. XkbAddGeo-
mOverlayRow returns NULL if any of the parameters is empty or if it was not able to allo-
cate space for the overlay.

To add a key to an existing overlay row, use XkbAddGeomOverlayKey.

XkbOverlayKeyPtr XkbAddGeomOverlayKey(overlay, row, under)
XkbOverlayPtr overlay; /* overlay to be updated */
XkbRowPtr row; /* row in overlay to be updated */
char * under; /* primary name of the key to be considered */

XkbAddGeomOverlayKey adds one key to the row in the overlay. If there is no key named
under in the row of the underlying section, XkbAddGeomOverlayKey returns NULL.
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13.11 Allocating and Freeing Geometry Components

Xkb provides a number of functions to allocate and free subcomponents of a keyboard
geometry. Use these functions to create or modify keyboard geometries. Note that these
functions merely allocate space for the new element(s), and it is up to you to fill in the val-
ues explicitly in your code. These allocation functions increase sz_* but never touch
num_* (unless there is an allocation failure, in which case they reset both sz_* and num_*
to zero). These functions return Success if they succeed, BadAlloc if they are not able
to allocate space, or BadValue if a parameter is not as expected.

To allocate space for an arbitrary number of outlines to a shape, use XkbAllocGeomOut-
lines.

Status XkbAllocGeomOutlines(shape, num_needed)
XkbShapePtr shape; /* shape for which outlines should be allocated */
int num_needed; /* number of new outlines required */

XkbAllocGeomOutlines allocates space for num_needed outlines in the specified shape.
The outlines are not initialized.

To free geometry outlines, use XkbFreeGeomOutlines.

void XkbFreeGeomOutlines(shape, first, count, free_all)
XkbShapePtr shape; /* shape in which outlines should be freed */
int first; /* first outline to be freed */
int count; /* number of outlines to be freed */
Bool free_all; /* True => all outlines are freed */

If free_all is True, all outlines are freed regardless of the value of first or count. Other-
wise, count outlines are freed beginning with the one specified by first.

To allocate space for an arbitrary number of keys to a row, use XkbAllocGeomKeys.

Status XkbAllocGeomKeys(row, num_needed)
XkbRowPtr row; /* row to which keys should be allocated */
int num_needed; /* number of new keys required */

XkbAllocGeomKeys allocates num_needed keys and adds them to the row. No initializa-
tion of the keys is done.

To free geometry keys, use XkbFreeGeomKeys.

void XkbFreeGeomKeys(row, first, count, free_all)
XkbRowPtr row; /* row in which keys should be freed */
int first; /* first key to be freed */
int count; /* number of keys to be freed */
Bool free_all; /* True => all keys are freed */

If free_all is True, all keys are freed regardless of the value of first or count. Otherwise,
count keys are freed beginning with the one specified by first.

To allocate geometry properties, use XkbAllocGeomProps.

Status XkbAllocGeomProps(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which properties should be allocated */
int num_needed; /* number of new properties required */
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XkbAllocGeomProps allocates space for num_needed properties and adds them to the
specified geometry geom. No initialization of the properties is done. A geometry property
associates an arbitrary string with an equally arbitrary name. Geometry properties can be
used to provide hints to programs that display images of keyboards, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

To free geometry properties, use XkbFreeGeomProperties.

void XkbFreeGeomProperties(geom, first, count, free_all)
XkbGeometryPtr geom; /* geometry in which properties should be freed */
int first; /* first property to be freed */
int count; /* number of properties to be freed */
Bool free_all; /* True => all properties are freed */

If free_all is True, all properties are freed regardless of the value of first or count. Other-
wise, count properties are freed beginning with the one specified by first.

To allocate geometry key aliases, use XkbAllocGeomKeyAliases.

Status XkbAllocGeomKeyAliases(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which key aliases should be allocated */
int num_needed; /* number of new key aliases required */

XkbAllocGeomKeyAliases allocates space for num_needed key aliases and adds them to
the specified geometry geom. A key alias is a pair of strings that associates an alternate
name for a key with the real name for that key.

To free geometry key aliases, use XkbFreeGeomKeyAliases.

void XkbFreeGeomKeyAliases(geom, first, count, free_all)
XkbGeometryPtr geom; /* geometry in which key aliases should be freed */
int first; /* first key alias to be freed */
int count; /* number of key aliases to be freed */
Bool free_all; /* True => all key aliases are freed */

If free_all is True, all aliases in the top level of the specified geometry geom are freed
regardless of the value of first or count. Otherwise, count aliases in geom are freed begin-
ning with the one specified by first.

To allocate geometry colors, use XkbAllocGeomColors.

Status XkbAllocGeomColors(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which colors should be allocated */
int num_needed; /* number of new colors required. */

XkbAllocGeomColors allocates space for num_needed colors and adds them to the speci-
fied geometry geom. A color name is a string whose interpretation is not specified by Xkb.
All other geometry data structures refer to colors using their indices in this global list or
pointers to colors in this list.
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To free geometry colors, use XkbFreeGeomColors.

void XkbFreeGeomColors(geom, first, count, free_all)
XkbGeometryPtr geom; /* geometry in which colors should be freed */
int first; /* first color to be freed */
int count; /* number of colors to be freed */
Bool free_all; /* True => all colors are freed */

If free_all is True, all colors are freed regardless of the value of first or count. Otherwise,
count colors are freed beginning with the one specified by first.

To allocate points in an outline, use XkbAllocGeomPoints.

Status XkbAllocGeomPoints(outline, num_needed)
XkbOutlinePtr outline; /* outline for which points should be allocated */
int num_needed; /* number of new points required */

XkbAllocGeomPoints allocates space for num_needed points in the specified outline. The
points are not initialized.

To free points in a outline, use XkbFreeGeomPoints.

void XkbFreeGeomPoints(outline, first, count, free_all)
XkbOutlinePtr outline; /* outline in which points should be freed */
int first; /* first point to be freed. */
int count; /* number of points to be freed */
Bool free_all; /* True => all points are freed */

If free_all is True, all points are freed regardless of the value of first and count. Other-
wise, the number of points specified by count are freed, beginning with the point specified
by first in the specified outline.

To allocate space for an arbitrary number of geometry shapes, use XkbAllocGeomShapes.

Status XkbAllocGeomShapes(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which shapes should be allocated */
int num_needed; /* number of new shapes required */

XkbAllocGeomShapes allocates space for num_needed shapes in the specified geometry
geom. The shapes are not initialized.

To free geometry shapes, use XkbFreeGeomShapes.

void XkbFreeGeomShapes(geom, first, count, f ree_all)
XkbGeometryPtr geom; /* geometry in which shapes should be freed */
int first; /* first shape to be freed */
int count; /* number of shapes to be freed */
Bool free_all; /* True => all shapes are freed */

If free_all is True, all shapes in the geometry are freed regardless of the values of first and
count. Otherwise, count shapes are freed, beginning with the shape specified by first.

To allocate geometry sections, use XkbAllocGeomSections.

Status XkbAllocGeomSections(geom, num_needed)
XkbGeometryPtr geom; /*geometry for which sections should be allocated */
int num_needed; /* number of new sections required */
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XkbAllocGeomSections allocates num_needed sections and adds them to the geometry
geom. No initialization of the sections is done.

To free geometry sections, use XkbFreeGeomSections.

void XkbFreeGeomSections(geom, first, count, free_all)
XkbGeometryPtr geom; /* geometry in which sections should be freed */
int first; /* first section to be freed. */
int count; /* number of sections to be freed */
Bool free_all; /* True => all sections are freed */

If free_all is True, all sections are freed regardless of the value of first and count. Other-
wise, the number of sections specified by count are freed, beginning with the section spec-
ified by first in the specified geometry.

To allocate rows in a section, use XkbAllocGeomRows.

Status XkbAllocGeomRows(section, num_needed)
XkbSectionPtr section; /* section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomRows allocates num_needed rows and adds them to the section. No initial-
ization of the rows is done.

To free rows in a section, use XkbFreeGeomRows.

void XkbFreeGeomRows(section, first, count, free_all)
XkbSectionPtr section; /* section in which rows should be freed */
int first; /* first row to be freed. */
int count; /* number of rows to be freed */
Bool free_all; /* True => all rows are freed */

If free_all is True, all rows are freed regardless of the value of first and count. Otherwise,
the number of rows specified by count are freed, beginning with the row specified by first
in the specified section.

To allocate overlays in a section, use XkbAllocGeomOverlays.

Status XkbAllocGeomOverlays(section, num_needed)
XkbSectionPtr section; /* section for which overlays should be allocated */
int num_needed; /* number of new overlays required */

XkbAllocGeomRows allocates num_needed overlays and adds them to the section. No ini-
tialization of the overlays is done.

To free rows in an section, use XkbFreeGeomOverlays.

void XkbFreeGeomOverlays(section, first, count, free_all)
XkbSectionPtr section; /* section in which overlays should be freed */
int first; /* first overlay to be freed. */
int count; /* number of overlays to be freed */
Bool free_all; /* True => all overlays are freed */

If free_all is True, all overlays are freed regardless of the value of first and count. Other-
wise, the number of overlays specified by count are freed, beginning with the overlay
specified by first in the specified section.
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To allocate rows in a overlay, use XkbAllocGeomOverlayRows.

Status XkbAllocGeomOverlayRows(overlay, num_needed)
XkbSectionPtr overlay; /* section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomOverlayRows allocates num_needed rows and adds them to the overlay. No
initialization of the rows is done.

To free rows in an overlay, use XkbFreeGeomOverlayRows.

void XkbFreeGeomOverlayRows(overlay, first, count, free_all)
XkbSectionPtr overlay; /* section in which rows should be freed */
int first; /* first row to be freed. */
int count; /* number of rows to be freed */
Bool free_all; /* True => all rows are freed */

If free_all is True, all rows are freed regardless of the value of first and count. Otherwise,
the number of rows specified by count are freed, beginning with the row specified by first
in the specified overlay.

To allocate keys in an overlay row, use XkbAllocGeomOverlayKeys.

Status XkbAllocGeomOverlayKeys(row, num_needed)
XkbRowPtr row; /* section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomOverlayKeys allocates num_needed keys and adds them to the row. No ini-
tialization of the keys is done.

To free keys in an overlay row, use XkbFreeGeomOverlayKeys.

void XkbFreeGeomOverlayKeys(row, first, count, free_all)
XkbRowPtr row; /* row in which keys should be freed */
int first; /* first key to be freed. */
int count; /* number of keys to be freed */
Bool free_all; /* True => all keys are freed */

If free_all is True, all keys are freed regardless of the value of first and count. Otherwise,
the number of keys specified by count are freed, beginning with the key specified by first
in the specified row.

To allocate doodads that are global to a keyboard geometry, use XkbAllocGeomDoodads.

Status XkbAllocGeomDoodads(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which doodads should be allocated */
int num_needed; /* number of new doodads required */

XkbAllocGeomDoodads allocates num_needed doodads and adds them to the specified
geometry geom. No initialization of the doodads is done.

To allocate doodads that are specific to a section, use XkbAllocGeomSectionDoodads.

Status XkbAllocGeomSectionDoodads(section, num_needed)
XkbSectionPtr section; /* section for which doodads should be allocated */
int num_needed; /* number of new doodads required */
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XkbAllocGeomSectionDoodads allocates num_needed doodads and adds them to the spec-
ified section. No initialization of the doodads is done.

To free geometry doodads, use XkbFreeGeomDoodads.

void XkbFreeGeomDoodads(doodads, count, free_all)
XkbDoodadPtr doodads; /* doodads to be freed */
int count; /* number of doodads to be freed */
Bool free_all; /* True => all doodads are freed */

If free_all is True, all doodads in the array are freed, regardless of the value of count.
Otherwise, count doodads are freed.

To allocate an entire geometry, use XkbAllocGeometry.

Status XkbAllocGeometry(xkb, sizes)
XkbDescPtr xkb; /* keyboard description for which geometry is to be allocated */
XkbGeometrySizesPtr sizes; /* initial sizes for all geometry components */

XkbAllocGeometry allocates a keyboard geometry and adds it to the keyboard description
specified by xkb. The keyboard description should be obtained via the XkbGetKeyboard or
XkbAllockeyboard functions. The sizes parameter specifies the number of elements to be
reserved for the subcomponents of the keyboard geometry and can be zero or more. These
subcomponents include the properties, colors, shapes, sections, and doodads.

To free an entire geometry, use XkbFreeGeometry.

void XkbFreeGeometry(geom, which, free_all)
XkbGeometryPtr geom; /* geometry to be freed */
unsigned int which; /* mask of geometry components to be freed */
Bool free_all; /* True => the entire geometry is freed. */

The values of which and free_all determine how much of the specified geometry is freed.
The valid values for which are:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (0x1f)

If free_all is True, the entire geometry is freed regardless of the value of which. Other-
wise, the portions of the geometry specified by which are freed.
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14 Xkb Keyboard Mapping

The Xkb keyboard mapping contains all the information the server and clients need to
interpret key events. This chapter provides an overview of the terminology used to
describe an Xkb keyboard mapping and introduces common utilities for manipulating the
keyboard mapping.

The mapping consists of two components, a server map and a client map. The client map
is the collection of information a client needs to interpret key events from the keyboard. It
contains a global list of key types and an array of key symbol maps, each of which
describes the symbols bound to a key and the rules to be used to interpret those symbols.
The server map contains the information the server needs to interpret key events. This
includes actions and behaviors for each key, explicit components for a key, and the virtual
modifiers and the per-key virtual modifier mapping.

For detailed information on particular components of the keyboard map, refer to Chapter
15, “Xkb Client Keyboard Mapping” and Chapter 16, “Xkb Server Keyboard Mapping.”

14.1 Notation and Terminology

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels, where group and level are defined as in the ISO9995 stan-
dard:

Group: A logical state of a keyboard providing access to a collection of graphic char-
acters. Usually these graphic characters logically belong together and may be
arranged on several levels within a group.

Level: One of several states (normally 2 or 3) governing which graphic character is
produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

These definitions, taken from the ISO standard, refer to graphic keys and characters. In the
context of Xkb, Group and Level are not constrained to graphic keys and characters; they
may be used with any key to access any character the key is capable of generating.

Level is often referred to as “Shift Level”. Levels are numbered sequentially starting at
one.

Note Shift level is derived from the modifier state, but not necessarily in the same way for
all keys. For example, the Shift modifier selects shift level 2 on most keys, but for
keypad keys the modifier bound to Num_Lock (that is, the NumLock virtual modi-
fier) also selects shift level 2.
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For example, consider the following key (the gray characters indicate symbols that are
implied or expected but are not actually engraved on the key):

Figure 14.1 Shift Levels and Groups

This key has two groups, indicated by the columns, and each group has two shift levels.
For the first group (Group1), the symbol shift level one is a, and the symbol for shift level
two is A. For the second group, the symbol for shift level one is æ, and the symbol for
shift level two is Æ.

14.1.1 Core Implementation

The standard interpretation rules for the core X keymap only allow clients to access keys
such as the one shown in Figure 14.1. That is, clients using the standard interpretation
rules can only access one of four keysyms for any given KeyPress event — two different
symbols in two different groups.

In general, the Shift modifier, the Lock modifier, and the modifier bound to the
Num_Lock key are used to change between shift level 1 and shift level 2. To switch
between groups, the core implementation uses the modifier bound to the Mode_switch
key. When the Mode_switch modifier is set, the keyboard is logically in Group 2. When
the Mode_switch modifier is not set, the keyboard is logically in Group 1.

The core implementation does not clearly specify the behavior of keys. For example, the
locking behavior of the CapsLock and Num_Lock keys depends on the vendor.

14.1.2 Xkb Implementation

Xkb extends the core implementation by providing access to up to four keyboard groups
with up to 63 shift levels per key1. In addition, Xkb provides precise specifications regard-
ing the behavior of keys. In Xkb, modifier state and the current group are independent
(with the exception of compatibility mapping, discussed in Chapter 17).

Xkb handles switching between groups via key actions, independent of any modifier state
information. Key actions are in the server map component and are described in detail in
section 16.1.4.

Xkb handles shift levels by associating a key type with each group on each key. Each key
type defines the shift levels available for the groups on keys of its type and specifies the
modifier combinations necessary to access each level.

1.  The core implementation restricts the number of symbols per key to 255. With four groups, this allows for up to 63
symbols (or shift levels) per group. Most keys will only have a few shift levels.
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For example, Xkb allows key types where the Control modifier can be used to access the
shift level two of a key. Key types are in the client map component and are described in
detail in section 15.2.

Xkb provides precise specification of the behavior of a key using key behaviors. Key
behaviors are in the server map component and are described in detail in section 16.2.

14.2 Getting Map Components from the Server

Xkb provides two functions to obtain the keyboard mapping components from the server.
The first function, XkbGetMap, allocates an XkbDescRec structure, retrieves mapping
components from the server, and stores them in the XkbDescRec structure it just allo-
cated. The second function, XkbGetUpdatedMap, retrieves mapping components from the
server and stores them in an XkbDescRec structure that has previously been allocated.

To allocate an XkbDescRec structure and populate it with the server’s keyboard client
map and server map, use XkbGetMap. XkbGetMap is similar to XkbGetKeyboard (see sec-
tion 6.2), but is used only for obtaining the address of an XkbDescRec structure that is
populated with keyboard mapping components. It allows finer control over which sub-
structures of the keyboard mapping components are to be populated. XkbGetKeyboard
always returns fully populated components, while XkbGetMap can be instructed to return
a partially populated component.

XkbDescPtr XkbGetMap(display, which, device_spec)
Display * display; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to populate */
unsigned int device_spec; /* device_id, or XkbUseCoreKbd */

The which mask is a bitwise inclusive OR of the masks defined in Table 14.1. Only those
portions of the keyboard server map and the keyboard client maps that are specified in
which are allocated and populated.

In addition to allocating and obtaining the server map and the client map, XkbGetMap also
sets the device_spec, the min_key_code, and max_key_code fields of the keyboard descrip-
tion.

XkbGetMap is synchronous; it queries the server for the desired information, waits for a
reply, and then returns. If successful, XkbGetMap returns a pointer to the XkbDescRec
structure it allocated. If unsuccessful, XkbGetMap returns NULL. When unsuccessful, one
of the following protocol errors is also generated: BadAlloc (unable to allocate the
XkbDescRec structure), BadValue (some mask bits in which are undefined), or BadIm-
plementation (a compatible version of the Xkb extension is not available in the server).
To free the returned data, use XkbFreeClientMap.

Xkb also provides convenience functions to get partial component definitions from the
server. These functions are specified in the “convenience functions” column in Table 14.1.
Refer to the sections listed in the table for more information on these functions.

Table 14.1  Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section
XkbKeyTypesMask (1<<0) client types

size_types
num_types

XkbGetKeyTypes
XkbResizeKeyType
XkbCopyKeyType
XkbCopyKeyTypes

15.2
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Xkb defines combinations of these masks for convenience:

#define XkbResizableInfoMask (XkbKeyTypesMask)
#define XkbAllClientInfoMask (XkbKeyTypesMask | XkbKeySymsMask |

XkbModifierMapMask)
#define XkbAllServerInfoMask (XkbExplicitComponentsMask |

 XkbKeyActionsMask| XkbKeyBehaviorsMask |
XkbVirtualModsMask | XkbVirtualModMapMask)

#define XkbAllMapComponentsMask (XkbAllClientInfoMask|XkbAllServerInfoMask)

Key types, symbol maps, and actions are all interrelated: changes in one require changes
in the others. The convenience functions make it easier to edit these components and han-
dle the interdependencies.

To update the client or server map information in an existing keyboard description, use
XkbGetUpdatedMap.

Status XkbGetUpdatedMap(display, which, xkb)
Display * display; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to populate */
XkbDescPtr xkb; /* keyboard description to be updated */

The which parameter is a bitwise inclusive OR of the masks in Table 14.1. If the needed
components of the xkb structure are not already allocated, XkbGetUpdatedMap allocates
them. XkbGetUpdatedMap fetches the requested information for the device specified in
the XkbDescRec passed in the xkb parameter.

XkbGetUpdatedMap is synchronous; it queries the server for the desired information,
waits for a reply, and then returns. If successful, XkbGetUpdatedMap returns Success. If
unsuccessful, XkbGetUpdatedMap returns one of the following: BadAlloc (unable to
allocate a component in the XkbDescRec structure), BadValue (some mask bits in which
are undefined), BadImplementation (a compatible version of the Xkb extension is not
available in the server or the reply from the server was invalid).

XkbKeySymsMask (1<<1) client syms
size_syms
num_syms
key_sym_map

XkbGetKeySyms
XkbResizeKeySyms
XkbChangeTypesOfKey

15.3

XkbModifierMapMask (1<<2) client modmap XkbGetKeyModifierMap 15.4
XkbExplicitComponentsMask (1<<3) server explicit XkbGetKeyExplicitComponents 16.3
XkbKeyActionsMask (1<<4) server key_acts

acts
num_acts
size_acts

XkbGetKeyActions
XkbResizeKeyActions

16.1

XkbKeyBehaviorsMask (1<<5) server behaviors XkbGetKeyBehaviors 16.2
XkbVirtualModsMask (1<<6) server vmods XkbGetVirtualMods 16.4
XkbVirtualModMapMask (1<<7) server vmodmap XkbGetVirtualModMap 16.4

Table 14.1  Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section
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14.3 Changing Map Components in the Server

There are two ways to make changes to map components: either change a local copy of the
keyboard map and call XkbSetMap to send the modified map to the server, or, to reduce
network traffic, use an XkbMapChangesRec structure and call XkbChangeMap.

Bool XkbSetMap(dpy, which, xkb)
Display * dpy; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to update */
XkbDescPtr xkb; /* description from which new values are taken */

Use XkbSetMap to send a complete new set of values for entire components (for example,
all symbols, all actions, and so on) to the server. The which parameter specifies the com-
ponents to be sent to the server, and is a bitwise inclusive OR of the masks listed in Table
14.1. The xkb parameter is a pointer to an XkbDescRec structure and contains the infor-
mation to be copied to the server. For each bit set in the which parameter, XkbSetMap
takes the corresponding structure values from the xkb parameter and sends it to the server
specified by dpy.

If any components specified by which are not present in the xkb parameter, XkbSetMap
returns False. Otherwise, it sends the update request to the server and returns True. Xkb-
SetMap can generate BadAlloc, BadLength, and BadValue protocol errors.

Key types, symbol maps, and actions are all interrelated; changes in one require changes
in the others. Xkb provides functions to make it easier to edit these components and han-
dle the interdependencies. Table 14.1 lists these helper functions and provides a pointer to
where they are defined.

14.3.1 The XkbMapChangesRec Structure

Use the XkbMapChangesRec structure to identify and track partial modifications to the
mapping components and to reduce the amount of traffic between the server and clients.

typedef struct _XkbMapChanges {
unsigned short changed; /* identifies valid components in structure */
KeyCode min_key_code; /* lowest numbered keycode for device */
KeyCode max_key_code; /* highest numbered keycode for device */
unsigned char first_type; /* index of first key type modified */
unsigned char num_types; /* # types modified */
KeyCode first_key_sym; /* first key whose key_sym_map changed */
unsigned char num_key_syms; /* # key_sym_map entries changed */
KeyCode first_key_act; /* first key whose key_acts entry changed */
unsigned char num_key_acts; /* # key_acts entries changed */
KeyCode first_key_behavior; /* first key whose behaviors changed */
unsigned char num_key_behaviors; /* # behaviors entries changed */
KeyCode first_key_explicit; /* first key whose explicit entry changed */
unsigned char num_key_explicit; /* # explicit entries changed */
KeyCode first_modmap_key; /* first key whose modmap entry changed */
unsigned char num_modmap_keys; /* # modmap entries changed */
KeyCode first_vmodmap_key; /* first key whose vmodmap changed */
unsigned char num_vmodmap_keys; /* # vmodmap entries changed */
unsigned char pad1; /* reserved */
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unsigned short vmods; /* mask indicating which vmods changed */
} XkbMapChangesRec,*XkbMapChangesPtr;

The changed field identifies the map components that have changed in an XkbDescRec
structure and may contain any of the bits in Table 14.1, which are also shown in Table
14.2. Every 1 bit in changed also identifies which other fields in the XkbMapChangesRec
structure contain valid values, as indicated in Table 14.2. The min_key_code and
max_key_code fields are for reference only; they are ignored on any requests sent to the
server and are always updated by the server whenever it returns the data for an
XkbMapChangesRec.

To update only partial components of a keyboard description, modify the appropriate
fields in the server and map components of a local copy of the keyboard description, then
call XkbChangeMap with an XkbMapChangesRec structure indicating which compo-
nents have changed.

Bool XkbChangeMap(dpy, xkb, changes)
Display * dpy; /* connection to X server */
XkbDescPtr xkb; /* description from which new values are taken */
XkbMapChangesPtr changes; /*identifies component parts to update */

XkbChangeMap copies any components specified by the changes structure from the key-
board description, xkb, to the X server specified by dpy.

Table 14.2  XkbMapChangesRec Masks

Mask
Valid
XkbMapChangesRec
Fields

XkbDescRec Field Containing
Changed Data

XkbKeyTypesMask first_type,
num_types

map->type[first_type] ..
map->type[first_type + num_types - 1]

XkbKeySymsMask first_key_sym,
num_key_syms

map->key_sym_map[first_key_sym] ..
map->key_sym_map[first_key_sym +
num_key_syms - 1]

XkbModifierMapMask first_modmap_key,
num_modmap_keys

map->modmap[first_modmap_key] ..
map->modmap[first_modmap_key +
num_modmap_keys-1]

XkbExplicitComponentsMask first_key_explicit,
num_key_explicit

server->explicit[first_key_explicit] ..
server->explicit[first_key_explicit +
num_key_explicit - 1]

XkbKeyActionsMask first_key_act,
num_key_acts

server->key_acts[first_key_act] ..
server->key_acts[first_key_act +
num_key_acts - 1]

XkbKeyBehaviorsMask first_key_behavior,
num_key_behaviors

server->behaviors[first_key_behavior] ..
server->behaviors[first_key_behavior +
num_key_behaviors - 1]

XkbVirtualModsMask vmods server->vmods[*]
XkbVirtualModMapMask first_vmodmap_key,

num_vmodmap_keys
server->vmodmap[first_vmodmap_key]
..
server->vmodmap[first_vmodmap_key
+ num_vmodmap_keys - 1]
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If any components specified by changes are not present in the xkb parameter,
XkbChangeMap returns False. Otherwise, it sends a request to the server and returns
True.

XkbChangeMap can generate BadAlloc, BadLength, and BadValue protocol errors.

14.4 Tracking Changes to Map Components

The Xkb extension reports XkbMapNotify events to clients wanting notification when-
ever a map component of the Xkb description for a device changes. There are many differ-
ent types of Xkb keyboard map changes. Xkb uses an event detail mask to identify each
type of change. The event detail masks are identical to the masks listed in Table 14.1.

To receive XkbMapNotify events under all possible conditions, use XkbSelectEvents (see
section 4.3) and pass XkbMapNotifyMask in both bits_to_change and values_for_bits.

To receive XkbMapNotify events only under certain conditions, use XkbSelectEventDe-
tails using XkbMapNotify as the event_type and specifying the desired map changes in
bits_to_change and values_for_bits using mask bits from Table 14.1.

The structure for XkbMapNotify events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbMapNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed; /* identifies valid fields in rest of event */
unsigned int resized; /* reserved */
int first_type; /* index of first key type modified */
int num_types /* # types modified */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
KeyCode first_key_sym; /* first key whose key_sym_map changed */
KeyCode first_key_act; /* first key whose key_acts entry changed */
KeyCode first_key_behavior; /* first key whose behaviors changed */
KeyCode first_key_explicit; /* first key whose explicit entry changed */
KeyCode first_modmap_key; /* first key whose modmap entry changed */
KeyCode first_vmodmap_key; /* # modmap entries changed */
int num_key_syms; /* # key_sym_map entries changed */
int num_key_acts; /* # key_acts entries changed */
int num_key_behaviors; /* # behaviors entries changed */
int num_key_explicit; /* # explicit entries changed */
int num_modmap_keys; /* # modmap entries changed */
int num_vmodmap_keys; /* # vmodmap entries changed */
unsigned int vmods; /* mask indicating which vmods changed */

} XkbMapNotifyEvent;

The changed field specifies the map components that have changed and is the bitwise
inclusive OR of the mask bits defined in Table 14.1. The other fields in this event are
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interpreted as the like-named fields in an XkbMapChangesRec (see section 14.3.1). The
XkbMapNotifyEvent structure also has an additional resized field that is reserved for
future use.

14.5 Allocating and Freeing Client and Server Maps

Calling XkbGetMap (see section 14.2) should be sufficient for most applications to get cli-
ent and server maps. As a result, most applications do not need to directly allocate client
and server maps.

If you change the number of key types or construct map components without loading the
necessary components from the X server, do not allocate any map components directly
using malloc or Xmalloc. Instead, use the Xkb allocators, XkbAllocClientMap, and XkbAl-
locServerMap.

Similarly, use the Xkb destructors, XkbFreeClientMap, and XkbFreeServerMap instead of
free or Xfree.

14.5.1 Allocating an Empty Client Map

To allocate and initialize an empty client map description record, use XkbAllocClientMap.

Status XkbAllocClientMap(xkb, which, type_count)
XkbDescPtr xkb; /* keyboard description in which to allocate client map */
unsigned int which; /* mask selecting map components to allocate */
unsigned int type_count; /* value of num_types field in map to be allocated */

XkbAllocClientMap allocates and initializes an empty client map in the map field of the
keyboard description specified by xkb. The which parameter specifies the particular com-
ponents of the client map structure to allocate and is a mask composed by a bitwise inclu-
sive OR of one or more of the masks shown in Table 14.3.

Note The min_key_code and max_key_code fields of the xkb parameter must be legal values
if the XkbKeySymsMask or XkbModifierMapMask masks are set in the which
parameter. If they are not valid, XkbAllocClientMap returns BadValue.

If the client map of the keyboard description is not NULL, and any fields are already allo-
cated in the client map, XkbAllocClientMap does not overwrite the existing values; it sim-

Table 14.3  XkbAllocClientMap Masks

Mask Effect
XkbKeyTypesMask The type_count field specifies the number of entries to pre-

allocate for the types field of the client map. If the
type_count field is less than XkbNumRequiredTypes (see
section 15.2.1), returns BadValue.

XkbKeySymsMask The min_key_code and max_key_code fields of the xkb
parameter are used to allocate the syms and key_sym_map
fields of the client map. The fields are allocated to contain
the maximum number of entries necessary for
max_key_code - min_key_code + 1 keys.

XkbModifierMapMask The min_key_code and max_key_code fields of the xkb
parameter are used to allocate the modmap field of the cli-
ent map. The field is allocated to contain the maximum
number of entries necessary for max_key_code -
min_key_code + 1 keys.
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ply ignores that part of the request. The only exception is the types array. If type_count is
greater than the current num_types field of the client map, XkbAllocClientMap resizes the
types array and resets the num_types field accordingly.

If XkbAllocClientMap is successful, it returns Success. Otherwise, it can return either
BadMatch, BadAlloc, or BadValue errors.

14.5.2 Freeing a Client Map

To free memory used by the client map member of an XkbDescRec structure, use
XkbFreeClientMap.

void XkbFreeClientMap(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description containing client map to free */
unsigned int which; /* mask identifying components of map to free */
Bool free_all; /* True => free all client components and map itself */

XkbFreeClientMap frees the components of client map specified by which in the XkbDes-
cRec structure specified by the xkb parameter and sets the corresponding structure com-
ponent values to NULL. The which parameter specifies a combination of the client map
masks shown in Table 14.3.

If free_all is True, which is ignored; XkbFreeClientMap frees every non-NULL structure
component in the client map, frees the XkbClientMapRec structure referenced by the
map member of the xkb parameter, and sets the map member to NULL.

14.5.3 Allocating an Empty Server Map

To allocate and initialize an empty server map description record, use XkbAllocServer-
Map.

Status XkbAllocServerMap(xkb, which, count_acts)
XkbDescPtr xkb; /* keyboard description in which to allocate server map */
unsigned int which; /* mask selecting map components to allocate */
unsigned int count_acts; /* value of num_acts field in map to be allocated */

XkbAllocServerMap allocates and initializes an empty server map in the server field of the
keyboard description specified by xkb. The which parameter specifies the particular com-
ponents of the server map structure to allocate, as specified in Table 14.4.

Note The min_key_code and max_key_code fields of the xkb parameter must be legal val-
ues. If they are not valid, XkbAllocServerMap returns BadValue.

Table 14.4  XkbAllocServerMap Masks

Mask Effect
XkbExplicitComponentsMask The min_key_code and max_key_code fields of the xkb parameter

are used to allocate the explicit field of the server map.
XkbKeyActionsMask The min_key_code and max_key_code fields of the xkb parameter

are used to allocate the key_acts field of the server map. The
count_acts parameter is used to allocate the acts field of the
server map.

XkbKeyBehaviorsMask The min_key_code and max_key_code fields of the xkb parameter
are used to allocate the behaviors field of the server map.

XkbVirtualModMapMask The min_key_code and max_key_code fields of the xkb parameter
are used to allocate the vmodmap field of the server map.
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If the server map of the keyboard description is not NULL and any fields are already allo-
cated in the server map, XkbAllocServerMap does not overwrite the existing values. The
only exception is with the acts array. If the count_acts parameter is greater than the cur-
rent num_acts field of the server map, XkbAllocServerMap resizes the acts array and
resets the num_acts field accordingly.

If XkbAllocServerMap is successful, it returns Success. Otherwise, it can return either
BadMatch or BadAlloc errors.

14.5.4 Freeing a Server Map

To free memory used by the server member of an XkbDescRec structure, use
XkbFreeServerMap.

void XkbFreeServerMap(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description containing server map to free */
unsigned int which; /* mask identifying components of map to free */
Bool free_all; /* True => free all server map components and server itself */

The XkbFreeServerMap function frees the specified components of server map in the
XkbDescRec structure specified by the xkb parameter and sets the corresponding struc-
ture component values to NULL. The which parameter specifies a combination of the
server map masks and is a bitwise inclusive OR of the masks listed in Table 14.4. If
free_all is True, which is ignored and XkbFreeServerMap frees every non-NULL structure
component in the server map, frees the XkbServerMapRec structure referenced by the
server member of the xkb parameter, and sets the server member to NULL.
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15 Xkb Client Keyboard Mapping

The Xkb client map for a keyboard is the collection of information a client needs to inter-
pret key events from the keyboard. It contains a global list of key types and an array of key
symbol maps, each of which describes the symbols bound to a key and the rules to be used
to interpret those symbols.

Figure 15.1 shows the relationships between elements in the client map:

Figure 15.1 Xkb Client Map
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15.1 The XkbClientMapRec Structure

The map field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb client map, which is of type XkbClientMapRec:

typedef struct { /* Client Map */
unsigned char size_types; /* # occupied entries in types */
unsigned char num_types; /* # entries in types */
XkbKeyTypePtr types; /* vector of key types used by this keymap */
unsigned short size_syms; /* length of the syms array */
unsigned short num_syms; /* # entries in syms */
KeySym * syms; /* linear 2d tables of keysyms, 1 per key */
XkbSymMapPtr key_sym_map; /* 1 per keycode, maps keycode to syms */
unsigned char * modmap; /* 1 per keycode, real mods bound to key */

} XkbClientMapRec, *XkbClientMapPtr;

The following sections describe each of the elements of the XkbClientMapRec structure
in more detail.

15.2 Key Types

Key types are used to determine the shift level of a key given the current state of the key-
board. The set of all possible key types for the Xkb keyboard description are held in the
types field of the client map, whose total size is stored in size_types, and whose total num-
ber of valid entries is stored in num_types. Key types are defined using the following
structures:

typedef struct { /* Key Type */
XkbModsRec mods; /* modifiers used to compute shift level */
unsigned char num_levels; /* total # shift levels, do not modify directly */
unsigned char map_count; /* # entries in map, preserve (if non-NULL) */
XkbKTMapEntryPtr map; /* vector of modifiers for each shift level */
XkbModsPtr preserve; /* mods to preserve for corresponding map entry */
Atom name; /* name of key type */
Atom * level_names; /* array of names of each shift level */

} XkbKeyTypeRec, *XkbKeyTypePtr;

typedef struct { /* Modifiers for a key type */
Bool active; /* True => entry active when determining shift level */
unsigned char level; /* shift level if modifiers match mods */
XkbModsRec mods; /* mods needed for this level to be selected */

} XkbKTMapEntryRec,*XkbKTMapEntryPtr;

The mods field of a key type is an XkbModsRec (see section 7.2) specifying the modifiers
the key type uses when calculating the shift level, and can be composed of both the core
modifiers and virtual modifiers. To set the modifiers associated with a key type, modify
the real_mods and vmods fields of the mods XkbModsRec accordingly. The mask field of
the XkbModsRec is reserved for use by Xkb and is calculated from the real_mods and
vmods fields.

The num_levels field holds the total number of shift levels for the key type. Xkb uses
num_levels to ensure the array of symbols bound to a key is large enough. Do not modify
num_levels directly to change the number if shift levels for a key type. Instead, use XkbRe-
sizeKeyType (see section 15.2.3).
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The map field is a vector of XkbKTMapEntryRec structures, with map_count entries, that
specify the modifier combinations for each possible shift level. Each map entry contains
an active field, a mods field, and a level field. The active field determines whether the
modifier combination listed in the mods field should be considered when determining shift
level. If active is False, this map entry is ignored. If active is True, the level field of the
map entry specifies the shift level to use when the current modifier combination matches
the combination specified in the mods field of the map entry.

Any combination of modifiers not explicitly listed somewhere in the map yields shift level
one. In addition, map entries specifying unbound virtual modifiers are not considered.

Any modifiers specified in mods are normally consumed by XkbTranslateKeyCode (see
section 12.1.3). For those rare occasions a modifier should be considered despite having
been used to look up a symbol, key types include an optional preserve field. If a preserve
member of a key type is not NULL, it represents a list of modifiers where each entry corre-
sponds directly to one of the key type’s map. Each entry lists the modifiers that should not
be consumed if the matching map entry is used to determine shift level.

Each shift level has a name and these names are held in the level_names array, whose
length is num_levels. The type itself also has a name, which is held in the name field.

For example, consider how the server handles the following possible symbolic description
of a possible key type (note that the format used to specify keyboard mappings in the
server database is not specified by the Xkb extension, although this format is one possible
example):

The name of the example key type is “ALPHATHREE,” and the modifiers it pays atten-
tion to are Shift, Lock, and the virtual modifier LevelThree. There are three shift lev-
els. The name of shift level one is “Base,” the name of shift level two is “Caps,” and the
name of shift level three is “Level3.”

Table 15.1  Example Key Type

Symbolic Description Key Type Data Structure
type “ALPHATHREE” { Xkb->map->types[i].name

modifiers = Shift+Lock+LevelThree; Xkb->map->types[i].mods
map[None]= Level1; Xkb->map->types[i].map[0]
map[Lock]= Level1; Xkb->map->types[i].map[1]
map[Shift]= Level2; Xkb->map->types[i].map[2]
map[LevelThree]= Level3; Xkb->map->types[i].map[3]
map[Shift+LevelThree]= Level3; Xkb->map->types[i].map[4]
preserve[None]= None; Xkb->map->types[i].perserve[0]
preserve[Lock]= Lock; Xkb->map->types[i].preserve[1]
preserve[Shift]= None; Xkb->map->types[i].preserve[2]
preserve[LevelThree]= None; Xkb->map->types[i].preserve[3]
preserve[Shift+Level3]= None; Xkb->map->types[i].preserve[4]
level_name[Level1]= “Base”; Xkb->map->types[i].level_names[0]
level_name[Level2]= “Caps”; Xkb->map->types[i].level_names[1]
level_name[Level3]= “Level3”; Xkb->map->types[i].level_names[2]

};
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Given the combination of the map and preserve specifications, there are five map entries.
The first map entry specifies that shift level one is to be used if no modifiers are set. The
second entry specifies the Lock modifier alone also yields shift level one. The third entry
specifies the Shift modifier alone yields shift level two. The fourth and fifth entries
specify that the virtual LevelThree modifier alone, or in combination with the Shift
modifier, yields shift level three.

Note Shift level three can be reached only if the virtual modifier LevelThree is bound to
a real modifier (see section 16.4). If LevelThree is not bound to a real modifier, the
map entries associated with it are ignored.

Because the Lock modifier is to be preserved for further event processing, the preserve
list is not NULL and parallels the map list. All preserve entries, except for the one corre-
sponding to the map entry that specifies the Lock modifier, do not list any modifiers. For
the map entry that specifies the Lock modifier, the corresponding preserve list entry lists
the Lock modifier, meaning do not consume the Lock modifier. In this particular case, the
preserved modifier is passed to Xlib translation functions and causes them to notice that
the Lock modifier is set; consequently, the Xlib functions apply the appropriate capitali-
zation rules to the symbol. Because this preserve entry is set only for a modifier that yields
shift level one, the capitalization occurs only for level-one symbols.

15.2.1 The Canonical Key Types

Xkb allows up to XkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in a key map. These predefined key
types are referred to as the canonical key types and describe the types of keys available on
most keyboards. The definitions for the canonical key types are held in the first XkbNum-
RequiredTypes entries of the types field of the client map and are indexed using the fol-
lowing constants:

XkbOneLevelIndex
XkbTwoLevelIndex
XkbAlphabeticIndex
XkbKeypadIndex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modifiers. A
symbolic representation of this key type could look like the following:

type “ONE_LEVEL” {
modifiers = None;
map[None]= Level1;
level_name[Level1]= “Any”;

};

The description of the ONE_LEVEL key type is stored in the types[XkbOneLevelIn-
dex] entry of the client key map.

TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are neither
alphabetic nor numeric keypad keys. The default TWO_LEVEL type uses only the Shift
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modifier. It returns shift level two if Shift is set, and level one if it is not. A symbolic
representation of this key type could look like the following:

type “TWO_LEVEL” {
modifiers = Shift;
map[Shift]= Level2;
level_name[Level1]= “Base”;
level_name[Level2]= “Shift”;

};

The description of the TWO_LEVEL key type is stored in the types[XkbTwoLevelIn-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lowercase
form of a symbol followed by the uppercase form of the same symbol. The default
ALPHABETIC type implements locale-sensitive “Shift cancels CapsLock” behavior
using both the Shift and Lock modifiers as follows:

• If Shift and Lock are both set, the default ALPHABETIC type yields level one.
• If Shift alone is set, it yields level two.
• If Lock alone is set, it yields level one, but preserves the Lock modifier so Xlib

notices and applies the appropriate capitalization rules. The Xlib functions are
locale-sensitive and apply different capitalization rules for different locales.

• If neither Shift nor Lock is set, it yields level one.

A symbolic representation of this key type could look like the following:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
preserve[Lock]= Lock;
level_name[Level1]= “Base”;
level_name[Level2]= “Caps”;

};

The description of the ALPHABETIC key type is stored in the types[XkbAlphabe-
ticIndex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which is a numeric keypad symbol. The numeric keypad symbol is assumed to reside at
level two. The default KEYPAD key type implements “Shift cancels NumLock” behavior
using the Shift modifier and the real modifier bound to the virtual modifier named “Num-
Lock,” known as the NumLock modifier, as follows:

• If Shift and NumLock are both set, the default KEYPAD type yields level one.
• If Shift alone is set, it yields level two.
• If NumLock alone is set, it yields level two.
• If neither Shift nor NumLock is set, it yields level one.
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A symbolic representation of this key type could look like the following:

type “KEYPAD” {
modifiers = Shift+NumLock;
map[None]= Level1;
map[Shift]= Level2;
map[NumLock]= Level2;
map[Shift+NumLock]= Level1;
level_name[Level1]= “Base”;
level_name[Level2]= “Caps”;

};

The description of the KEYPAD key type is stored in the types[XkbKeypadIndex] entry
of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key types in a client map to their default values, use
XkbInitCanonicalKeyTypes.

Status XkbInitCanonicalKeyTypes(xkb, which, keypadVMod)
XkbDescPtr xkb; /* keyboard description containing client map to initialize */
unsigned int which; /* mask of types to initialize */
int keypadVMod; /* index of NumLock virtual modifier */

XkbInitCanonicalKeyTypes initializes the first XkbNumRequiredTypes key types of the
keyboard specified by the xkb parameter to their default values. The which parameter
specifies what canonical key types to initialize and is a bitwise inclusive OR of the follow-
ing masks: XkbOneLevelMask, XkbTwoLevelMask, XkbAlphabeticMask, and
XkbKeypadMask. Only those canonical types specified by the which mask are initialized.

If XkbKeypadMask is set in the which parameter, XkbInitCanonicalKeyTypes looks up the
NumLock named virtual modifier to determine which virtual modifier to use when initial-
izing the KEYPAD key type. If the NumLock virtual modifier does not exist, XkbInitCa-
nonicalKeyTypes creates it.

XkbInitCanonicalKeyTypes normally returns Success. It returns BadAccess if the Xkb
extension has not been properly initialized, and BadAccess if the xkb parameter is not
valid.

15.2.2 Getting Key Types from the Server

To obtain the list of available key types in the server’s keyboard mapping, use XkbGet-
KeyTypes.

Status XkbGetKeyTypes(dpy, first, num, xkb)
Display * dpy; /* connection to X server */
unsigned int first; /* index to first type to get, 0 => 1st type */
unsigned int num; /* number of key types to be returned */
XkbDescPtr xkb; /* keyboard description containing client map to update */

Note XkbGetKeyTypes is used to obtain descriptions of the key types themselves, not the
key types bound to individual keys. To obtain the key types bound to an individual
key, refer to the key_sym_map field of the client map (see section 15.3.1).
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XkbGetKeyTypes queries the server for the desired types, waits for a reply, and returns the
desired types in the xkb->map->types. If successful, it returns Success.

XkbGetKeyTypes returns BadAccess if the Xkb extension has not been properly initial-
ized and BadValue if the combination of first and num results in numbers out of valid
range.

15.2.3 Changing the Number of Levels in a Key Type

To change the number of levels in a key type, use XkbResizeKeyType.

Status XkbResizeKeyType(xkb, type_ndx, map_count, want_preserve, new_num_lvls)
XkbDescPtr xkb; /* keyboard description containing client map to update */
int type_ndx; /* index in xkb->map->types of type to change */
int map_count; /* total # of map entries needed for the type */
Bool want_preserve; /* True => list of preserved modifiers is necessary */
int new_num_lvls; /* new max # of levels for type */

XkbResizeKeyType changes the type specified by xkb->map->types[type_ndx], and reallo-
cates the symbols and actions bound to all keys that use the type, if necessary. XkbRe-
sizeKeyType updates only the local copy of the types in xkb; to update the server’s copy for
the physical device, use XkbSetMap or XkbChangeMap after calling XkbResizeKeyType.

The map_count parameter specifies the total number of map entries needed for the type,
and can be zero or greater. If map_count is zero, XkbResizeKeyType frees the existing map
and preserve entries for the type if they exist and sets them to NULL.

The want_preserve parameter specifies whether a preserve list for the key should be cre-
ated. If want_preserve is True, the preserve list with map_count entries is allocated or
reallocated if it already exists. Otherwise, if want_preserve is False, the preserve field is
freed if necessary and set to NULL.

The new_num_lvls parameter specifies the new maximum number of shift levels for the
type and is used to calculate and resize the symbols and actions bound to all keys that use
the type.

If type_ndx does not specify a legal type, new_num_lvls is less than 1, or the map_count is
less than zero, XkbResizeKeyType returns BadValue. If XkbResizeKeyType encounters
any problems with allocation, it returns BadAlloc. Otherwise, it returns Success.

15.2.4 Copying Key Types

Use XkbCopyKeyType and XkbCopyKeyTypes to copy one or more XkbKeyTypeRec
structures.

Status XkbCopyKeyType(from, into)
XkbKeyTypePtr from; /* pointer to XkbKeyTypeRec to be copied */
XkbKeyTypePtr into; /* pointer to XkbKeyTypeRec to be changed */

XkbCopyKeyType copies the key type specified by from to the key type specified by into.
Both must point to legal XkbKeyTypeRec structures. Xkb assumes from and into point to
different places. As a result, overlaps can be fatal. XkbCopyKeyType frees any existing
map, preserve, and level_names in into prior to copying. If any allocation errors occur
while copying from to into, XkbCopyKeyType returns BadAlloc. Otherwise, XkbCopy-
KeyType copies from to into and returns Success.



November 10, 1997 Library Version 1.0/Document Revision 1.1 133

The X Keyboard Extension 15   Xkb Client Keyboard Mapping

Status XkbCopyKeyTypes(from, into, num_types)
XkbKeyTypePtr from; /* pointer to array of XkbKeyTypeRecs to copy */
XkbKeyTypePtr into; /* pointer to array of XkbKeyTypeRecs to change */
int num_types; /* number of types to copy */

XkbCopyKeyTypes copies num_types XkbKeyTypeRec structures from the array specified
by from into the array specified by into. It is intended for copying between, rather than
within, keyboard descriptions, so it doesn’t check for overlaps. The same rules that apply
to the from and into parameters in XkbCopyKeyType apply to each entry of the from and
into arrays of XkbCopyKeyTypes. If any allocation errors occur while copying from to into,
XkbCopyKeyTypes returns BadAlloc. Otherwise, XkbCopyKeyTypes copies from to into
and returns Success.

15.3 Key Symbol Map

The entire list of key symbols for the keyboard mapping is held in the syms field of the cli-
ent map. Whereas the core keyboard mapping is a two-dimensional array of KeySyms
whose rows are indexed by keycode, the syms field of Xkb is a linear list of KeySyms that
needs to be indexed uniquely for each key. This section describes the key symbol map and
the methods for determining the symbols bound to a key.

The reason the syms field is a linear list of KeySyms is to reduce the memory consumption
associated with a keymap; because Xkb allows individual keys to have multiple shift lev-
els and a different number of groups per key, a single two-dimensional array of KeySyms
would potentially be very large and sparse. Instead, Xkb provides a small two-dimen-
sional array of KeySyms for each key. To store all of these individual arrays, Xkb concat-
enates each array together in the syms field of the client map.

In order to determine which KeySyms in the syms field are associated with each keycode,
the client map contains an array of key symbol mappings, held in the key_sym_map field.
The key_sym_map field is an array of XkbSymMapRec structures indexed by keycode. The
key_sym_map array has min_key_code unused entries at the start to allow direct indexing
using a keycode. All keycodes falling between the minimum and maximum legal key-
codes, inclusive, have key_sym_map arrays, whether or not any key actually yields that
code. The KeySymMapRec structure is defined as follows:

#define XkbNumKbdGroups 4
#define XkbMaxKbdGroup (XkbNumKbdGroups-1)

typedef struct { /* map to keysyms for a single keycode */
unsigned char kt_index[XkbNumKbdGroups]; /* key type index for each group */
unsigned char group_info; /* # of groups and out of range group handling */
unsigned char width; /* max # of shift levels for key */
unsigned short offset; /* index to keysym table in syms array */

} XkbSymMapRec, *XkbSymMapPtr;

These fields are described in detail in the following sections.

15.3.1 Per-Key Key Type Indices

The kt_index array of the XkbSymMapRec structure contains the indices of the key types
(see section 15.2) for each possible group of symbols associated with the key. To obtain
the index of a key type or the pointer to a key type, Xkb provides the following macros, to
access the key types:
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Note The array of key types is of fixed width and is large enough to hold key types for the
maximum legal number of groups (XkbNumKbdGroups, currently four); if a key has
fewer than XkbNumKbdGroups groups, the extra key types are reported but ignored.

int XkbKeyTypeIndex(xkb, keycode, group) /* macro*/
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; /* group index */

XkbKeyTypeIndex computes an index into the types vector of the client map in xkb from
the given keycode and group index.

XkbKeyTypePtr XkbKeyType(xkb, keycode, group) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; /* group index */

XkbKeyType returns a pointer to the key type in the types vector of the client map in xkb
corresponding to the given keycode and group index.

15.3.2 Per-Key Group Information

The group_info field of an XkbSymMapRec is an encoded value containing the number of
groups of symbols bound to the key as well as the specification of the treatment of
out-of-range groups. It is legal for a key to have zero groups, in which case it also has zero
symbols and all events from that key yield NoSymbol. To obtain the number of groups of
symbols bound to the key, use XkbKeyNumGroups. To change the number of groups
bound to a key, use XkbChangeTypesOfKey (see section 15.3.6). To obtain a mask that
determines the treatment of out-of-range groups, use XkbKeyGroupInfo and XkbOutOf-
RangeGroupInfo.

The keyboard controls (see Chapter 10) contain a groups_wrap field specifying the han-
dling of illegal groups on a global basis. That is, when the user performs an action causing
the effective group to go out of the legal range, the groups_wrap field specifies how to
normalize the effective keyboard group to a group that is legal for the keyboard as a
whole, but there is no guarantee that the normalized group will be within the range of legal
groups for any individual key. The per-key group_info field specifies how a key treats a
legal effective group if the key does not have a type specified for the group of concern.
For example, the Enter key usually has just one group defined. If the user performs an
action causing the global keyboard group to change to Group2, the group_info field for
the Enter key describes how to handle this situation.

Out-of-range groups for individual keys are mapped to a legal group using the same
options as are used for the overall keyboard group. The particular type of mapping used is
controlled by the bits set in the group_info flag, as shown in Table 15.2. See section 10.7.1
for more details on the normalization methods in this table.

Table 15.2  group_info Range Normalization

Bits set in group_info Normalization method
XkbRedirectIntoRange XkbRedirectIntoRange
XkbClampIntoRange XkbClampIntoRange
none of the above XkbWrapIntoRange
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Xkb provides the following macros to access group information:

int XkbKeyNumGroups(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyNumGroups returns the number of groups of symbols bound to the key corre-
sponding to keycode.

unsigned char XkbKeyGroupInfo(xkb, keycode) /*macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyGroupInfo returns the group_info field from the XkbSymMapRec structure associ-
ated with the key corresponding to keycode.

unsigned char XkbOutOfRangeGroupInfo(grp_inf)/* macro */
unsigned char grp_inf; /* group_info field of XkbSymMapRec */

XkbOutOfRangeGroupInfo returns only the out-of-range processing information from the
group_info field of an XkbSymMapRec structure.

unsigned char XkbOutOfRangeGroupNumber(grp_inf)/* macro */
unsigned char grp_inf; /* group_info field of XkbSymMapRec */

XkbOutOfRangeGroupNumber returns the out-of-range group number, represented as a
group index, from the group_info field of an XkbSymMapRec structure.

15.3.3 Key Width

The maximum number of shift levels for a type is also referred to as the width of a key
type. The width field of the key_sym_map entry for a key contains the width of the widest
type associated with the key. The width field cannot be explicitly changed; it is updated
automatically whenever the symbols or set of types bound to a key are changed.

15.3.4 Offset in to the Symbol Map

The key width and number of groups associated with a key are used to form a small
two-dimensional array of KeySyms for a key. This array may be different sizes for differ-
ent keys. The array for a single key is stored as a linear list, in row-major order. The arrays
for all of the keys are stored in the syms field of the client map. There is one row for each
group associated with a key and one column for each level. The index corresponding to a
given group and shift level is computed as:

idx = group_index * key_width + shift_level

The offset field of the key_sym_map entry for a key is used to access the beginning of the
array.

Xkb provides the following macros for accessing the width and offset for individual keys,
as well as macros for accessing the two-dimensional array of symbols bound to the key:

int XkbKeyGroupsWidth(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
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XkbKeyGroupsWidth computes the maximum width associated with the key correspond-
ing to keycode.

int XkbKeyGroupWidth(xkb, keycode, grp) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int grp; /* group of interest */

XkbKeyGroupWidth computes the width of the type associated with the group grp for the
key corresponding to keycode.

int XkbKeySymsOffset(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeySymsOffset returns the offset of the two-dimensional array of keysyms for the key
corresponding to keycode.

int XkbKeyNumSyms(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyNumSyms returns the total number of keysyms for the key corresponding to key-
code.

KeySym * XkbKeySymsPtr(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeySymsPtr returns the pointer to the two-dimensional array of keysyms for the key
corresponding to keycode.

KeySym XkbKeySymEntry(xkb, keycode, shift, grp)/* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int shift; /* shift level of interest */
int grp; /* group of interest */

XkbKeySymEntry returns the keysym corresponding to shift level shift and group grp from
the two-dimensional array of keysyms for the key corresponding to keycode

15.3.5 Getting the Symbol Map for Keys from the Server

To obtain the symbols for a subset of the keys in a keyboard description, use XkbGetKey-
Syms:

Status XkbGetKeySyms(dpy, first, num, xkb)
Display * dpy; /* connection to X server */
unsigned int first; /* keycode of first key to get */
unsigned int num; /* number of keycodes for which syms desired */
XkbDescPtr xkb; /* Xkb description to be updated */

XkbGetKeySyms sends a request to the server to obtain the set of keysyms bound to num
keys starting with the key whose keycode is first. It waits for a reply and returns the key-
syms in the map.syms field of xkb. If successful, XkbGetKeySyms returns Success. The
xkb parameter must be a pointer to a valid Xkb keyboard description.
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If the client map in the xkb parameter has not been allocated, XkbGetKeySyms allocates
and initializes it before obtaining the symbols.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetKeySyms returns BadAccess. If num is less than 1 or
greater than XkbMaxKeyCount, XkbGetKeySyms returns BadValue. If any allocation
errors occur, XkbGetKeySyms returns BadAlloc.

15.3.6 Changing the Number of Groups and Types Bound to a Key

To change the number of groups and the types bound to a key, use XkbChangeType-
sOfKey.

Status XkbChangeTypesOfKey(xkb, key, n_groups, groups, new_types_in, p_changes)

XkbDescPtr xkb; /* keyboard description to be changed */
int key; /* keycode for key of interest */
int n_groups; /* new number of groups for key */
unsigned int groups; /* mask indicating groups to change */
int * new_types_in; /* indices for new groups specified in groups */
XkbMapChangesPtr p_changes; /* notes changes made to xkb */

XkbChangeTypesOfKey reallocates the symbols and actions bound to the key, if necessary,
and initializes any new symbols or actions to NoSymbol or NoAction, as appropriate. If
the p_changes parameter is not NULL, XkbChangeTypesOfKey adds the XkbKeySyms-
Mask to the changes field of p_changes and modifies the first_key_sym and
num_key_syms fields of p_changes to include the key that was changed. See section 14.3.1
for more information on the XkbMapChangesPtr structure. If successful, XkbChange-
TypesOfKey returns Success.

The n_groups parameter specifies the new number of groups for the key. The groups
parameter is a mask specifying the groups for which new types are supplied and is a bit-
wise inclusive OR of the following masks: XkbGroup1Mask, XkbGroup2Mask,
XkbGroup3Mask, and XkbGroup4Mask.

The new_types_in parameter is an integer array of length n_groups. Each entry represents
the type to use for the associated group and is an index into xkb->map->types. The
new_types_in array is indexed by group index; if n_groups is four and groups only has
Group1Mask and Group3Mask set, new_types_in looks like this:

new_types_in[0] = type for Group1
new_types_in[1] = ignored
new_types_in[2] = type for Group3
new_types_in[3] = ignored

For convenience, Xkb provides the following constants to use as indices to the groups:

Table 15.3  Group Index Constants

Constant Name Value
XkbGroup1Index 0
XkbGroup2Index 1
XkbGroup3Index 2
XkbGroup4Index 3
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If the Xkb extension has not been properly initialized, XkbChangeTypesOfKey returns
BadAccess. If the xkb parameter it not valid (that is, it is NULL or it does not contain a
valid client map), XkbChangeTypesOfKey returns BadMatch. If the key is not a valid key-
code, n_groups is greater than XkbNumKbdGroups, or the groups mask does not contain
any of the valid group mask bits, XkbChangeTypesOfKey returns BadValue. If it is neces-
sary to resize the key symbols or key actions arrays and any allocation errors occur,
XkbChangeTypesOfKey returns BadAlloc.

15.3.7 Changing the Number of Symbols Bound to a Key

To change the number of symbols bound to a key, use XkbResizeKeySyms.

KeySym *XkbResizeKeySyms(xkb, key, needed)
XkbDescRec * xkb; /* keyboard description to be changed */
int key; /* keycode for key to modify */
int needed; /* new number of keysyms required for key */

XkbResizeKeySyms reserves the space needed for needed keysyms and returns a pointer to
the beginning of the new array that holds the keysyms. It adjusts the offset field of the
key_sym_map entry for the key if necessary and can also change the syms, num_syms, and
size_syms fields of xkb->map if it is necessary to reallocate the syms array. XkbResizeKey-
Syms does not modify either the width or number of groups associated with the key.

If needed is greater than the current number of keysyms for the key, XkbResizeKeySyms
initializes all new keysyms in the array to NoSymbol.

Because the number of symbols needed by a key is normally computed as width * number
of groups, and XkbResizeKeySyms does not modify either the width or number of groups
for the key, a discrepancy exists upon return from XkbResizeKeySyms between the space
allocated for the keysyms and the number required. The unused entries in the list of sym-
bols returned by XkbResizeKeySyms are not preserved across future calls to any of the map
editing functions, so you must update the key symbol mapping (which updates the width
and number of groups for the key) before calling another allocator function. A call to
XkbChangeTypesOfKey will update the mapping.

If any allocation errors occur while resizing the number of symbols bound to the key,
XkbResizeKeySyms returns NULL.

Note A change to the number of symbols bound to a key should be accompanied by a
change in the number of actions bound to a key. Refer to section 16.1.16 for more
information on changing the number of actions bound to a key.

15.4 The Per-Key Modifier Map

The modmap entry of the client map is an array, indexed by keycode, specifying the real
modifiers bound to a key. Each entry is a mask composed of a bitwise inclusive OR of the
legal real modifiers: ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, and Mod5Mask. If a bit is set in a modmap entry, the correspond-
ing key is bound to that modifier.

Pressing or releasing the key bound to a modifier changes the modifier set and unset state.
The particular manner in which the modifier set and unset state changes is determined by
the behavior and actions assigned to the key (see Chapter 16).
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15.4.1 Getting the Per-Key Modifier Map from the Server

To update the modifier map for one or more of the keys in a keyboard description, use
XkbGetKeyModifierMap.

Status XkbGetKeyModifierMap(dpy, first, num, xkb)
Display * dpy; /* connection to X server */
unsigned int first; /* keycode of first key to get */
unsigned int num; /* number of keys for which information is desired */
XkbDescPtr xkb; /* keyboard description to update */

XkbGetKeyModifierMap sends a request to the server for the modifier mappings for num
keys starting with the key whose keycode is first. It waits for a reply and places the results
in the xkb->map->modmap array. If successful, XkbGetKeyModifier returns Success.

If the map component of the xkb parameter has not been allocated, XkbGetKeyModifier-
Map allocates and initializes it.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetKeySyms returns BadAccess. If any allocation errors
occur while obtaining the modifier map, XkbGetKeyModifierMap returns BadAlloc.
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16 Xkb Server Keyboard Mapping

The server field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

Figure 16.1 Server Map Relationships

The Xkb server map contains the information the server needs to interpret key events and
is of type XkbServerMapRec:

#define XkbNumVirtualMods 16

typedef struct { /* Server Map */
unsigned short num_acts; /* # of occupied entries in acts */
unsigned short size_acts; /* # of entries in acts */
XkbAction * acts; /* linear 2d tables of key actions, 1 per keycode */
XkbBehavior * behaviors; /* key behaviors,1 per keycode */
unsigned short * key_acts; /* index into acts, 1 per keycode */
unsigned char * explicit; /* explicit overrides of core remapping, 1 per key */
unsigned char vmods[XkbNumVirtualMods]; /* real mods bound to virtual mods */
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unsigned short * vmodmap; /* virtual mods bound to key, 1 per keycode*/
} XkbServerMapRec, *XkbServerMapPtr;

The num_acts, size_acts, acts, and key_acts fields specify the key actions, defined in sec-
tion 16.1. The behaviors field describes the behavior for each key and is defined in section
16.2. The explicit field describes the explicit components for a key and is defined in sec-
tion 16.3. The vmods and the vmodmap fields describe the virtual modifiers and the
per-key virtual modifier mapping and are defined in section 16.4.

16.1 Key Actions

A key action defines the effect key presses and releases have on the internal state of the
server. For example, the expected key action associated with pressing the Shift key is to
set the Shift modifier. There is zero or one key action associated with each keysym
bound to each key.

Just as the entire list of key symbols for the keyboard mapping is held in the syms field of
the client map, the entire list of key actions for the keyboard mapping is held in the acts
array of the server map. The total size of acts is specified by size_acts, and the number of
entries is specified by num_acts.

The key_acts array, indexed by keycode, describes the actions associated with a key. The
key_acts array has min_key_code unused entries at the start to allow direct indexing using
a keycode. If a key_acts entry is zero, it means the key does not have any actions associ-
ated with it. If an entry is not zero, the entry represents an index into the acts field of the
server map, much as the offset field of a KeySymMapRec structure is an index into the
syms field of the client map.

The reason the acts field is a linear list of XkbActions is to reduce the memory consump-
tion associated with a keymap. Because Xkb allows individual keys to have multiple shift
levels and a different number of groups per key, a single two-dimensional array of Key-
Syms would potentially be very large and sparse. Instead, Xkb provides a small
two-dimensional array of XkbActions for each key. To store all of these individual
arrays, Xkb concatenates each array together in the acts field of the server map.

The key action structures consist only of fields of type char or unsigned char. This is done
to optimize data transfer when the server sends bytes over the wire. If the fields are any-
thing but bytes, the server has to sift through all of the actions and swap any nonbyte
fields. Because they consist of nothing but bytes, it can just copy them out.

Xkb provides the following macros, to simplify accessing information pertaining to key
actions:

Bool XkbKeyHasActions(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyHasActions returns True if the key corresponding to keycode has any actions asso-
ciated with it; otherwise, it returns False.

int XkbKeyNumActions(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
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XkbKeyNumActions computes the number of actions associated with the key correspond-
ing to keycode. This should be the same value as the result of XkbKeyNumSyms (see sec-
tion 15.3.3).

XkbKeyActionPtr XkbKeyActionsPtr(xkb, keycode)/* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyActionsPtr returns a pointer to the two-dimensional array of key actions associated
with the key corresponding to keycode. Use XkbKeyActionsPtr only if the key actually has
some actions associated with it, that is, XkbKeyNumActions(xkb, keycode) returns some-
thing greater than zero.

XkbAction XkbKeyAction(xkb, keycode, idx) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int idx; /* index for group and shift level */

XkbKeyAction returns the key action indexed by idx in the two-dimensional array of key
actions associated with the key corresponding to keycode. idx may be computed from the
group and shift level of interest as follows:

idx = group_index * key_width + shift_level

XkbAction XkbKeyActionEntry(xkb, keycode, shift, grp)/* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int shift; /* shift level within group */
int grp; /* group index for group of interest */

XkbKeyActionEntry returns the key action corresponding to group grp and shift level lvl
from the two-dimensional table of key actions associated with the key corresponding to
keycode.

16.1.1 The XkbAction Structure

The description for an action is held in an XkbAction structure, which is a union of all
possible Xkb action types:

typedef union _XkbAction {
XkbAnyAction any;
XkbModAction mods;
XkbGroupAction group;
XkbISOAction iso;
XkbPtrAction ptr;
XkbPtrBtnAction btn;
XkbPtrDfltAction dflt;
XkbSwitchScreenAction screen;
XkbCtrlsAction ctrls;
XkbMessageAction msg;
XkbRedirectKeyAction redirect;
XkbDeviceBtnAction devbtn;
XkbDeviceValuatorAction devval;
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unsigned char type;
} XkbAction;

The type field is provided for convenience and is the same as the type field in the individ-
ual structures. The following sections describe the individual structures for each action in
detail.

16.1.2 The XkbAnyAction Structure

The XkbAnyAction structure is a convenience structure that refers to any of the actions:

#define XkbAnyActionDataSize 7

typedef struct _XkbAnyAction {
unsigned char type; /* type of action; determines interpretation for data */
unsigned char data[XkbAnyActionDataSize];

} XkbAnyAction;

The data field represents a structure for an action, and its interpretation depends on the
type field. The valid values for the type field, and the data structures associated with them
are shown in Table 16.1:

16.1.3 Actions for Changing Modifiers’ State

Actions associated with the XkbModAction structure change the state of the modifiers
when keys are pressed and released (see Chapter 7 for a discussion of modifiers):

Table 16.1  Action Types

Type Structure for Data XkbAction
Union MemberSection

XkbSA_NoAction XkbSA_NoAction means the server
does not perform an action for the key;
this action does not have an associated
data structure.

any

XkbSA_SetMods
XkbSA_LatchMods
XkbSA_LockMods

XkbModAction mods 16.1.3

XkbSA_SetGroup
XkbSA_LatchGroup
XkbSA_LockGroup

XkbGroupAction group 16.1.4

XkbSA_MovePtr XkbPtrAction ptr 16.1.5
XKbSA_PtrBtn
XkbSA_LockPtrBtn

XkbPtrBtnAction btn 16.1.6

XkbSA_SetPtrDflt XkbPtrDfltAction dflt 16.1.7
XkbSA_ISOLock XkbISOAction iso 16.1.8
XkbSA_SwitchScreen XkbSwitchScreenAction screen 16.1.9
XkbSA_SetControls
XkbSA_LockControls

XkbCtrlsAction ctrls 16.1.10

XkbSA_ActionMessage XkbMessgeAction msg 16.1.11
XkbSA_RedirectKey XkbRedirectKeyAction redirect 16.1.12
XkbSA_DeviceBtn
XKbSA_LockDeviceBtn

XkbDeviceBtnAction devbtn 16.1.13

XkbSA_DeviceValuator XkbDeviceValuatorAction devval 16.1.14
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typedef struct _XkbModAction {
unsigned char type; /* XkbSA_{Set|Latch|Lock}Mods */
unsigned char flags; /* with type, controls the effect on modifiers */
unsigned char mask; /* same as mask field of a modifier description */
unsigned char real_mods; /* same as real_mods field of a modifier description */
unsigned char vmods1; /* derived from vmods field of a modifier description */
unsigned char vmods2; /* derived from vmods field of a modifier description */

} XkbModAction;

In the following description, the term action modifiers means the real modifier bits associ-
ated with this action. Depending on the value of flags (see Table 16.3), these are desig-
nated either in the mask field of the XkbModAction structure itself or the real modifiers
bound to the key for which the action is being used. In the latter case, this is the client
map->modmap[keycode] field.

The type field can have any of the values shown in Table 16.2.

Table 16.2  Modifier Action Types

Type Effect
XkbSA_SetMods • A key press adds any action modifiers to the keyboard’s base modi-

fiers.
• A key release clears any action modifiers in the keyboard’s base

modifiers, provided no other key affecting the same modifiers is
logically down.

• If no other keys are physically depressed when this key is released,
and XkbSA_ClearLocks is set in the flags field, the key release
unlocks any action modifiers.

XkbSA_LatchMods • Key press and key release events have the same effect as for
XkbSA_SetMods; if no keys are physically depressed when this
key is released, key release events have the following additional
effects:

• Modifiers unlocked due to XkbSA_ClearLocks have no further
effect.

• If XkbSA_LatchToLock is set in the flags field, a key release
locks and then unlatches any remaining action modifiers that are
already latched.

• A key release latches any action modifiers not used by the
XkbSA_ClearLocks and XkbSA_LatchToLock flags.

XkbSA_LockMods • A key press sets the base state of any action modifiers. If
XkbSA_LockNoLock is set in the flags field, a key press also sets
the locked state of any action modifiers.

• A key release clears any action modifiers in the keyboard’s base
modifiers, provided no other key that affects the same modifiers is
down. If XkbSA_LockNoUnlock is not set in the flags field, and
any of the action modifiers were locked before the corresponding
key press occurred, a key release unlocks them.
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The flags field is composed of the bitwise inclusive OR of the masks shown in Table 16.3.
A general meaning is given in the table, but the exact meaning depends on the action type.

If XkbSA_UseModMapMods is not set in the flags field, the mask, real_mods, vmods1, and
vmods2 fields are used to determine the action modifiers. Otherwise they are ignored and
the modifiers bound to the key (client map->modmap[keycode]) are used instead.

The mask, real_mods, vmods1, and vmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While the mask and real_mods fields correspond
directly to the mask and real_mods fields of an Xkb modifier description, the vmods1 and
vmods2 fields are combined to correspond to the vmods field of an Xkb modifier descrip-
tion. Xkb provides the following macros, to convert between the two formats:

unsigned short XkbModActionVMods(act) /* macro */
XkbAction act; /* action from which to extract virtual mods */

XkbModActionVMods returns the vmods1 and vmods2 fields of act converted to the vmods
format of an Xkb modifier description.

void XkbSetModActionVMods(act, vmods) /* macro */
XkbAction act; /* action in which to set vmods */
unsigned short vmods; /* virtual mods to set */

XkbSetModActionVMods sets the vmods1 and vmods2 fields of act using the vmods format
of an Xkb modifier description.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may be used only with Actions of type XkbModAction and XkbISO-
Action.

16.1.4 Actions for Changing Group State

Actions associated with the XkbGroupAction structure change the current group state
when keys are pressed and released (see Chapter 5 for a description of groups and key-
board state):

typedef struct _XkbGroupAction {
unsigned char type; /* XkbSA_{Set|Latch|Lock}Group */
unsigned char flags; /* with type, controls the effect on groups */

Table 16.3  Modifier Action Flags

Flag Meaning
XkbSA_UseModMapMods If set, the action modifiers are determined by the modifiers

bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask, real_mods, vmod1, and vmod2 fields.

XkbSA_ClearLocks If set and no keys are physically depressed when this key
transition occurs, the server unlocks any action modifiers.

XkbSA_LatchToLock If set, and the action type is XkbSA_LatchMods, the server
locks the action modifiers if they are already latched.

XkbSA_LockNoLock If set, and the action type is XkbSA_LockMods, the server
only unlocks the action modifiers.

XkbSA_LockNoUnlock If set, and the action is XkbSA_LockMods, the server only
locks the action modifiers.
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char group_XXX; /* represents a group index or delta */
} XkbGroupAction;

The type field can have any of the following values:

The flags field is composed of the bitwise inclusive OR of the masks shown in Table 16.5.
A general meaning is given in the table, but the exact meaning depends on the action type.

Table 16.4  Group Action Types

Type Effect
XkbSA_SetGroup • If the XkbSA_GroupAbsolute bit is set in the flags field, key press

events change the base keyboard group to the group specified by the
group_XXX field. Otherwise, key press events change the base key-
board group by adding the group_XXX field to the base keyboard
group. In either case, the resulting effective keyboard group is brought
back into range depending on the value of the groups_wrap field of the
controls structure (see section 10.7.1).

• If a key with an XkbSA_ISOLock action (see section 16.1.8) is
pressed while this key is down, the key release of this key has no
effect. Otherwise, the key release cancels the effects of the key press.

• If the XkbSA_ClearLocks bit is set in the flags field, and no keys
are physically depressed when this key is released, the key release also
sets the locked keyboard group to Group1.

XkbSA_LatchGroup • Key press and key release events have the same effect as for
XkbSA_SetGroup; if no keys are physically depressed when this key
is released, key release events have the following additional effects.

• If the XkbSA_LatchToLock bit is set in the flags field and the
latched keyboard group index is nonzero, the key release adds the
delta applied by the corresponding key press to the locked keyboard
group and subtracts it from the latched keyboard group. The locked
and effective keyboard group are brought back into range according to
the value of the groups_wrap field of the controls structure.

• Otherwise, the key press adds the key press delta to the latched key-
board group.

XkbSA_LockGroup • If the XkbSA_GroupAbsolute is set in the flags field, key press
events set the locked keyboard group to the group specified by the
group_XXX field. Otherwise, key press events add the group specified
by the group_XXX field to the locked keyboard group. In either case,
the resulting locked and effective keyboard groups are brought back
into range depending on the value of the groups_wrap field of the con-
trols structure.

• A key release has no effect.

Table 16.5  Group Action Flags

Flag Meaning
XkbSA_ClearLocks If set and no keys are physically depressed when this key

transition occurs, the server sets the locked keyboard group
to Group1 on a key release.

XkbSA_LatchToLock If set, and the action type is SA_LatchGroup, the server
locks the action group if it is already latched.

XkbSA_GroupAbsolute If set, the group_XXX field represents an absolute group
number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.
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The group_XXX field represents a signed character. Xkb provides the following macros to
convert between a signed integer value and a signed character:

int XkbSAGroup(act) /* macro */
XkbAction act; /* action from which to extract group */

XkbSAGroup returns the group_XXX field of act converted to a signed int.

void XkbSASetGroup(act, grp) /* macro */
XkbAction act; /* action from which to set group */
int grp; /* group index to set in group_XXX */

XkbSASetGroup sets the group_XXX field of act from the group index grp.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may only be used with Actions of type XkbGroupAction and XkbI-
SOAction.

16.1.5 Actions for Moving the Pointer

Actions associated with the XkbPtrAction structure move the pointer when keys are
pressed and released:

typedef struct _XkbPtrAction {
unsigned char type; /* XkbSA_MovePtr */
unsigned char flags; /* determines type of pointer motion */
unsigned char high_XXX; /* x coordinate, high bits*/
unsigned char low_XXX; /* y coordinate, low bits */
unsigned char high_YYY; /* x coordinate, high bits */
unsigned char low_YYY; /* y coordinate, low bits */

} XkbPtrAction;

If the MouseKeys control is not enabled (see section 10.5.1), KeyPress and KeyRe-
lease events are treated as though the action is XkbSA_NoAction.

If the MouseKeys control is enabled, a server action of type XkbSA_MovePtr instructs
the server to generate core pointer MotionNotify events rather than the usual Key-
Press event, and the corresponding KeyRelease event disables any mouse keys timers
that were created as a result of handling the XkbSA_MovePtr action.

The type field of the XkbPtrAction structure is always XkbSA_MovePtr.

The flags field is a bitwise inclusive OR of the masks shown in Table 16.6.

Table 16.6  Pointer Action Types

Action Type Meaning
XkbSA_NoAcceleration If not set, and the MouseKeysAccel control is enabled (see

section 10.5.2), the KeyPress initiates a mouse keys timer
for this key; every time the timer expires, the cursor moves.

XkbSA_MoveAbsoluteX If set, the X portion of the structure specifies the new pointer
X coordinate. Otherwise, the X portion is added to the cur-
rent pointer X coordinate to determine the new pointer X
coordinate.



November 10, 1997 Library Version 1.0/Document Revision 1.1 148

The X Keyboard Extension 16   Xkb Server Keyboard Mapping

Each of the X and Y coordinantes of the XkbPtrAction structure is composed of two
signed 16-bit values, that is, the X coordinate is composed of high_XXX and low_XXX,
and similarly for the Y coordinate. Xkb provides the following macros, to convert
between a signed integer and two signed 16-bit values in XkbPtrAction structures:

int XkbPtrActionX(act) /* macro */
XkbPtrAction act; /* action from which to extract X */

XkbPtrActionX returns the high_XXX and low_XXX fields of act converted to a signed int.

int XkbPtrActionY(act) /* macro */
XkbPtrAction act; /* action from which to extract Y */

XkbPtrActionY returns the high_YYY and low_YYY fields of act converted to a signed int.

void XkbSetPtrActionX(act, x) /* macro */
XkbPtrAction act; /* action in which to set X */
int x; /* new value to set */

XkbSetPtrActionX sets the high_XXX and low_XXX fields of act from the signed integer
value x.

void XkbSetPtrActionY(act, y) /* macro */
XkbPtrAction act; /* action in which to set Y */
int y; /* new value to set */

XkbSetPtrActionX sets the high_YYY and low_YYY fields of act from the signed integer
value y.

16.1.6 Actions for Simulating Pointer Button Press and Release

Actions associated with the XkbPtrBtnAction structure simulate the press and release
of pointer buttons when keys are pressed and released:

typedef struct _XkbPtrBtnAction {
unsigned char type; /*XkbSA_PtrBtn, XkbSA_LockPtrBtn */
unsigned char flags; /* with type, controls the effect on pointer buttons*/
unsigned char count; /* controls number of ButtonPress and ButtonRelease events */
unsigned char button; /* pointer button to simulate */

} XkbPtrBtnAction;

If the MouseKeys (see section 10.5.1) control is not enabled, KeyPress and KeyRe-
lease events are treated as though the action is XkbSA_NoAction.

XkbSA_MoveAbsoluteY If set, the Y portion of the structure specifies the new
pointer Y coordinate. Otherwise, the Y portion is added
to the current pointer Y coordinate to determine the new
pointer Y coordinate.

Table 16.6  Pointer Action Types

Action Type Meaning
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The type field can have any one of the values shown in Table 16.7.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table 16.8.
A general meaning is given in the table, but the exact meaning depends on the action type.:

16.1.7 Actions for Changing the Pointer Button Simulated

Actions associated with the XkbPtrDfltAction structure change the mk_dflt_btn
attribute of the MouseKeys control (see section 10.5.1):

typedef struct _XkbPtrDfltAction {
unsigned char type; /* XkbSA_SetPtrDflt */
unsigned char flags; /* controls the pointer button number */
unsigned char affect; /* XkbSA_AffectDfltBtn */

Table 16.7  Pointer Button Action Types

Type Effect
XkbSA_PtrBtn • If XkbSA_UseDfltButton is set in the flags field, the event is gen-

erated for the pointer button specified by the mk_dflt_btn attribute of
the MouseKeys control (see section 10.5.1). Otherwise, the event is
generated for the button specified by the button field.

• If the mouse button specified for this action is logically down, the key
press and corresponding key release are ignored and have no effect.
Otherwise, a key press causes one or more core pointer button events
instead of the usual KeyPress event. If count is zero, a key press
generates a single ButtonPress event; if count is greater than zero,
a key press generates count pairs of ButtonPress and ButtonRe-
lease events.

• If count is zero, a key release generates a core pointer ButtonRe-
lease that matches the event generated by the corresponding Key-
Press; if count is nonzero, a key release does not cause a
ButtonRelease event. A key release never generates a key KeyRe-
lease event.

XkbSA_LockPtrBtn • If the button specified by the MouseKeys default button or button is
not locked, a key press causes a ButtonPress event instead of a
KeyPress event and locks the button. If the button is already locked
or if XkbSA_LockNoUnlock is set in the flags field, a key press is
ignored and has no effect.

• If the corresponding key press was ignored, and if
XkbSA_LockNoLock is not set in the flags field, a key release gener-
ates a ButtonRelease event instead of a KeyRelease event and
unlocks the specified button. If the corresponding key press locked a
button, the key release is ignored and has no effect.

Table 16.8  Pointer Button Action Flags

Flag Meaning
XkbSA_UseDfltButton If set, the action uses the pointer button specified by the

mk_dflt_btn attribute of the MouseKeys control (see section
10.5.1). Otherwise, the action uses the pointer button specified by
the button field.

XkbSA_LockNoLock If set, and the action type is XkbSA_LockPtrBtn, the server
only unlocks the pointer button.

XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockPtrBtn, the server
only locks the pointer button.
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char valueXXX; /* new default button member */
} XkbPtrDfltAction;

If the MouseKeys control is not enabled, KeyPress and KeyRelease events are treated
as though the action is XkbSA_NoAction. Otherwise, this action changes the mk_dflt_btn
attribute of the MouseKeys control.

The type field of the XkbPtrDfltAction structure should always be
XkbSA_SetPtrDflt.

The flags field is composed of the bitwise inclusive OR of the values shown in Table 16.9
(currently there is only one value defined).

The affect field specifies what changes as a result of this action. The only valid value for
the affect field is XkbSA_AffectDfltBtn.

The valueXXX field is a signed character that represents the new button value for the
mk_dflt_btn attribute of the MouseKeys control (see section 10.5.1). If
XkbSA_DfltBtnAbsolute is set in flags, valueXXX specifies the button to be used; oth-
erwise, valueXXX specifies the amount to be added to the current default button. In either
case, illegal button choices are wrapped back around into range. Xkb provides the follow-
ing macros, to convert between the integer and signed character values in XkbPtrDfl-
tAction structures:

int XkbSAPtrDfltValue(act) /* macro */
XkbAction act; /* action from which to extract group */

XkbSAPtrDfltValue returns the valueXXX field of act converted to a signed int.

void XkbSASetPtrDfltValue(act, val) /* macro */
XkbPtrDfltAction act; /* action in which to set valueXXX */
int val; /* value to set in valueXXX */

XkbSASetPtrDfltValue sets the valueXXX field of act from val.

16.1.8 Actions for Locking Modifiers and Group

Actions associated with the XkbISOAction structure lock modifiers and the group
according to the ISO9995 specification.

Operated by itself, the XkbISOAction is just a caps lock. Operated simultaneously with
another modifier key, it transforms the other key into a locking key. For example, press
ISO_Lock, press and release Control_L, release ISO_Lock ends up locking the Control
modifier.

The default behavior is to convert:

   {Set,Latch}Mods to: LockMods
   {Set,Latch}Group to: LockGroup
   SetPtrBtn to: LockPtrBtn

Table 16.9  Pointer Default Flags

Flag Meaning
XkbSA_DfltBtnAbsolute If set, the value field represents an absolute pointer button.

Otherwise, the value field represents the amount to be added
to the current default button.
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   SetControls to: LockControls

The affects field allows you to turn those effects on or off individually. Set
XkbSA_ISONoAffectMods to disable the first, XkbSA_ISONoAffectGroup to disable
the second, and so forth.

typedef struct _XkbISOAction {
unsigned char type; /* XkbSA_ISOLock */
unsigned char flags; /* controls changes to group or modifier state */
unsigned char mask; /* same as mask field of a modifier description */
unsigned char real_mods;/* same as real_mods field of a modifier description */
char group_XXX;/* group index or delta group */
unsigned char affect; /* specifies whether to affect mods, group, ptrbtn, or controls*/
unsigned char vmods1; /* derived from vmods field of a modifier description */
unsigned char vmods2; /* derived from vmods field of a modifier description */

} XkbISOAction;

The type field of the XkbISOAction structure should always be XkbSA_ISOLock.

The interpretation of the flags field depends on whether the XkbSA_ISODfltIsGroup is
set in the flags field or not.

If the XkbSA_ISODfltIsGroup is set in the flags field, the action is used to change the
group state. The remaining valid bits of the flags field are composed of a bitwise inclusive
OR using the masks shown in Table 16.10.

Table 16.10  ISO Action Flags when XkbSA_ISODfltIsGroup is Set

Flag Meaning
XkbSA_ISODfltIsGroup If set, the action is used to change the base group state. Must

be set for the remaining bits in this table to carry their inter-
pretations.
A key press sets the base group as specified by the
group_XXX field and the XkbSA_GroupAbsolute bit of
the flags field (see section Note). If no other actions are
transformed by the XkbISO_Lock action, a key release
locks the group. Otherwise, a key release clears group
set by the key press.

XkbSA_GroupAbsolute If set, the group_XXX field represents an absolute group
number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.

XkbSA_ISONoAffectMods If not set, any XkbSA_SetMods or XkbSA_LatchMods
actions that occur simultaneously with the XkbSA_ISOLock
action are treated as XkbSA_LockMod actions instead.

XkbSA_ISONoAffectGroup If not set, any XkbSA_SetGroup or XkbSA_LatchGroup
actions that occur simultaneously with the XkbSA_ISOLock
action are treated as XkbSA_LockGroup actions instead.

XkbSA_ISONoAffectPtr If not set, any XkbSA_PtrBtn actions that occur simulta-
neously with the XkbSA_ISOLock action are treated as
XkbSA_LockPtrBtn actions instead.

XkbSA_ISONoAffectCtrls If not set, any XkbSA_SetControls actions that occur
simultaneously with the XkbSA_ISOLock action are treated
as XkbSA_LockControls actions instead.
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If the XkbSA_ISODfltIsGroup is not set in the flags field, the action is used to change
the modifier state and the remaining valid bits of the flags field are composed of a bitwise
inclusive OR using the masks shown in Table 16.11.

The group_XXX field represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

The mask, real_mods, vmods1, and vmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While the mask and real_mods fields correspond
directly to the mask and real_mods fields of an Xkb modifier description, the vmods1 and
vmods2 fields are combined to correspond to the vmods field of an Xkb modifier descrip-
tion. Xkb provides macros to convert between the two formats as shown in section 16.1.3.

The affect field is composed of a bitwise inclusive OR using the masks shown in Table
16.11.

Table 16.11  ISO Action Flags when XkbSA_ISODfltIsGroup is Not Set

Flag Meaning
XkbSA_ISODfltIsGroup If not set, action is used to change the base modifier state.

Must not be set for the remaining bits in this table to carry
their interpretations.
A key press sets the action modifiers in the keyboard’s base
modifiers using the mask, real_mods, vmods1, and
vmods2 fields (see section 16.1.3). If no other actions are
transformed by the XkbISO_Lock action, a key release
locks the action modifiers. Otherwise, a key release
clears the base modifiers set by the key press.

XkbSA_UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask, real_mods, vmod1, and vmod2 fields.

XkbSA_LockNoLock If set, the server only unlocks the action modifiers.
XkbSA_LockNoUnlock If set, the server only locks the action modifiers.
XkbSA_ISONoAffectMods If not set, any XkbSA_SetMods or XkbSA_LatchMods

actions that occur simultaneously with the XkbSA_ISOLock
action are treated as XkbSA_LockMod actions instead.

XkbSA_ISONoAffectGroup If not set, any XkbSA_SetGroup or XkbSA_LatchGroup
actions that occur simultaneously with the XkbSA_ISOLock
action are treated as XkbSA_LockGroup actions instead.

XkbSA_ISONoAffectPtr If not set, any XkbSA_PtrBtn actions that occur simulta-
neously with the XkbSA_ISOLock action are treated as
XkbSA_LockPtrBtn actions instead.

XkbSA_ISONoAffectCtrls If not set, any XkbSA_SetControls actions that occur
simultaneously with the XkbSA_ISOLock action are treated
as XkbSA_LockControls actions instead.

Table 16.12  ISO Action Affect Field Values

Affect Meaning
XkbSA_ISODNoAffectMods If XkbSA_ISONoAffectMods is not set, any SA_SetMods

or SA_LatchMods actions occurring simultaneously with
the XkbISOAction are treated as SA_LockMods instead.
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16.1.9 Actions for Changing the Active Screen

Actions associated with the XkbSwitchScreen action structure change the active screen
on a multiscreen display:

Note This action is optional. Servers are free to ignore the action or any of its flags if they
do not support the requested behavior. If the action is ignored, it behaves like
XkbSA_NoAction. Otherwise, key press and key release events do not generate an
event.

typedef struct _XkbSwitchScreenAction {
unsigned char type; /* XkbSA_SwitchScreen */
unsigned char flags; /* controls screen switching */
char screenXXX; /* screen number or delta */

} XkbSwitchScreenAction;

The type field of the XkbSwitchScreenAction structure should always be
XkbSA_SwitchScreen.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.13.

The screenXXX field is a signed character value that represents either the relative or abso-
lute screen index, depending on the state of the XkbSA_SwitchAbsolute bit in the flags
field. Xkb provides the following macros to convert between the integer and signed char-
acter value for screen numbers in XkbSwitchScreenAction structures:

int XkbSAScreen(act) /* macro */
XkbSwitchScreenAction act; /* action from which to extract screen */

XkbSAScreen returns the screenXXX field of act converted to a signed int.

XkbSA_ISONoAffectGroup If XkbSA_ISONoAffectGroup is not set, any
SA_SetGroup or SA_LatchGroup actions occurring
simultaneously with the XkbISOAction are treated as
SA_LockGroup instead.

XkbSA_ISONoAffectPtr If XkbSA_ISONoAffectPtr is not set, any SA_PtrBtn
actions occurring simultaneously with the XkbISOAction
are treated as SA_LockPtrBtn instead.

XkbSA_ISONoAffectCtrls If XkbSA_ISONoAffectCtrls is not set, any
SA_SetControls actions occurring simultaneously with
the XkbISOAction are treated as SA_LockControls
instead.

Table 16.13  Switch Screen Action Flags

Flag Meaning
XkbSA_SwitchAbsolute If set, the screenXXX field represents the index of the

new screen. Otherwise, it represents an offset from the
current screen to the new screen.

XkbSA_SwitchApplication If not set, the action should switch to another screen on
the same server. Otherwise, it should switch to another X
server or application that shares the same physical dis-
play.

Table 16.12  ISO Action Affect Field Values

Affect Meaning
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void XkbSASetScreen(act, s) /* macro */
XkbSwitchScreenAction act; /* action in which to set screenXXX */
int s; /* value to set in screenXXX */

XkbSASetScreen sets the screenXXX field of act from s.

16.1.10Actions for Changing Boolean Controls State

Actions associated with the XkbCtrlsAction structure change the state of the boolean
controls (see section 10.1):

typedef struct _XkbCtrlsAction {
unsigned char type; /* XkbSA_SetControls, XkbSA_LockControls */
unsigned char flags; /* with type, controls enabling and disabling of controls */
unsigned char ctrls3; /* ctrls0 through ctrls3 represent the boolean controls */
unsigned char ctrls2; /* ctrls0 through ctrls3 represent the boolean controls */
unsigned char ctrls1; /* ctrls0 through ctrls3 represent the boolean controls */
unsigned char ctrls0; /* ctrls0 through ctrls3 represent the boolean controls */

} XkbCtrlsAction;

The type field can have any one of the values shown in Table 16.14.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.15.

The XkbSA_SetControls action implements a key that enables a boolean control when
pressed and disables it when released. The XkbSA_LockControls action is used to
implement a key that toggles the state of a boolean control each time it is pressed and
released. The XkbSA_LockNoLock and XkbSA_LockNoUnlock flags allow modifying
the toggling behavior to only unlock or only lock the boolean control.

Table 16.14  Controls Action Types

Type Effect
XkbSA_SetControls • A key press enables any boolean controls specified in the ctrls

fields that were not already enabled at the time of the key press.
• A key release disables any controls enabled by the key press.
• This action can cause XkbControlsNotify events (see sec-

tion 10.1).
XkbSA_LockControls • If the XkbSA_LockNoLock bit is not set in the flags field, a

key press enables any controls specified in the ctrls fields that
were not already enabled at the time of the key press.

• If the XkbSA_LockNoUnlock bit is not set in the flags field, a
key release disables any controls specified in the ctrls fields
that were not already disabled at the time of the key press.

• This action can cause XkbControlsNotify events (see sec-
tion 10.1).

Table 16.15  Control Action Flags

Flag Meaning
XkbSA_LockNoLock If set, and the action type is XkbSA_LockControls, the

server only disables controls.
XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockControls, the

server only enables controls.
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The ctrls0, ctrls1, ctrls2, and ctrls3 fields represent the boolean controls in the
enabled_ctrls field of the controls structure (see section 10.1). Xkb provides the following
macros, to convert between the two formats:

unsigned int XkbActionCtrls(act) /* macro */
XkbCtrlsAction act; /* action from which to extract controls */

XkbActionCtrls returns the ctrls fields of act converted to an unsigned int.

void XkbSAActionSetCtrls(act, ctrls) /* macro */
XkbCtrlsAction act; /* action in which to set ctrls0-ctrls3 */
unsigned int ctrls; /* value to set in ctrls0-ctrls3 */

XkbSAActionSetCtrls sets the ctrls0 through ctrls3 fields of act from ctrls.

16.1.11Actions for Generating Messages

Actions associated with the XkbMessageAction structure generate XkbActionMes-
sage events:

#define XkbActionMessageLength 6

typedef struct _XkbMessageAction {
unsigned char type; /* XkbSA_ActionMessage */
unsigned char flags; /* controls event generation via key presses and releases */
unsigned char message[XkbActionMessageLength]; /* message */

} XkbMessageAction;

The type field of the XkbMessageAction structure should always be
XkbSA_ActionMessage.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.16.

The message field is an array of XkbActionMessageLength unsigned characters and
may be set to anything the keymap designer wishes.

Detecting Key Action Messages

To receive XkbActionMessage events by calling either XkbSelectEvents or XkbSelect-
EventDetails (see section 4.3).

To receive XkbActionMessage events under all possible conditions, use XkbSelect-
Events and pass XkbActionMessageMask in both bits_to_change and values_for_bits.

Table 16.16  Message Action Flags

Flag Meaning
XkbSA_MessageOnPress If set, key press events generate an XkbActionMes-

sage event that reports the keycode, event type, and
contents of the message field.

XkbSA_MessageOnRelease If set, key release events generate an XkbActionMes-
sage event that reports the keycode, event type, and
contents of the message field.

XkbSA_MessageGenKeyEvent If set, key press and key release events generate Key-
Press and KeyRelease events, regardless of whether
they generate XkbActionMessage events.
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The XkbActionMessage event has no event details. However, you can call XkbSelect-
EventDetails using XkbActionMessage as the event_type and specifying XkbAllAc-
tionMessageMask in bits_to_change and values_for_bits. This has the same effect as a
call to XkbSelectEvents.

The structure for the XkbActionMessage event is defined as follows:

typedef struct _XkbActionMessage {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbActionMessage */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
KeyCode keycode; /* keycode of key triggering event */
Bool press; /* True => key press, False => release */
Bool key_event_follows; /* True => KeyPress/KeyRelease follows */
char message[XkbActionMessageLength+1]; /* message text */

} XkbActionMessageEvent;

The keycode is the keycode of the key that was pressed or released. The press field speci-
fies whether the event was the result of a key press or key release.

The key_event_follows specifies whether a KeyPress (if press is True) or KeyRelease
(if press is False) event is also sent to the client. As with all other Xkb events, XkbAc-
tionMessageEvents are delivered to all clients requesting them, regardless of the cur-
rent keyboard focus. However, the KeyPress or KeyRelease event that conditionally
follows an XkbActionMessageEvent is sent only to the client selected by the current
keyboard focus. key_event_follows is True only for the client that is actually sent the fol-
lowing KeyPress or KeyRelease event.

The message field is set to the message specified in the action and is guaranteed to be
NULL-terminated; the Xkb extension forces a NULL into message[XkbActionMessage-
Length].

16.1.12Actions for Generating a Different Keycode

Actions associated with the XkbRedirectKeyAction structure generate KeyPress and
KeyRelease events containing a keycode different from the key that was pressed or
released:

typedef struct_XkbRedirectKeyAction {
unsigned char type; /* XkbSA_RedirectKey */
unsigned char new_key; /* keycode to be put in event */
unsigned char mods_mask; /* mask of real mods to be reset */
unsigned char mods; /* mask of real mods to take values from */
unsigned char vmods_mask0;/* first half of mask of virtual mods to be reset */
unsigned char vmods_mask1;/* other half of mask of virtual mods to be reset */
unsigned char vmods0; /* first half of mask of virtual mods to take values from */
unsigned char vmods1; /* other half of mask of virtual mods to take values from */

} XkbRedirectKeyAction;
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The type field for the XkbRedirectKeyAction structure should always be
XkbSA_RedirectKey.

Key presses cause a KeyPress event for the key specified by the new_key field instead of
the actual key. The state reported in this event reports the current effective modifiers
changed as follows: any real modifiers selected by the mods_mask field are set to corre-
sponding values from the mods field. Any real modifiers bound to the virtual modifiers
specified by the vmods_mask0 and vmods_mask1 fields are either set or cleared, depend-
ing on the corresponding values in the vmods0 and vmods1 fields. If the real and virtual
modifier definitions specify conflicting values for a single modifier, the real modifier def-
inition has priority.

Key releases cause a KeyRelease event for the key specified by the new_key field
instead of the actual key. The state for this event consists of the effective keyboard modi-
fiers at the time of the release, changed as described previously.

The XkbSA_RedirectKey action normally redirects to another key on the same device
as the key that caused the event, unless that device does not belong to the input extension
KeyClass, in which case this action causes an event on the core keyboard device. (The
input extension categorizes devices by breaking them into classes. Keyboards, and other
input devices with keys, are classified as KeyClass devices by the input extension.)

The vmods_mask0 and vmods_mask1 fields actually represent one vmods_mask value, as
described in Chapter 7. Xkb provides the following macros, to convert between the two
formats:

unsigned int XkbSARedirectVModsMask(act) /* macro */
XkbRedirectKeyAction act; /* action from which to extract vmods */

XkbSARedirectVModsMask returns the vmods_mask0 and vmods_mask1 fields of act con-
verted to an unsigned int.

void XkbSARedirectSetVModsMask(act, vm) /* macro */
XkbRedirectKeyAction act; /* action in which to set vmods */
unsigned int vm; /* new value for virtual modifier mask */

XkbSARedirectSetVModsMask sets the vmods_mask0 and vmods_mask1 fields of act from
vm.

Similarly, the vmods0 and vmods1 fields actually represent one vmods value, as described
in Chapter 7. To convert between the two formats, Xkb provides the following conve-
nience macros:

unsigned int XkbSARedirectVMods(act) /* macro */
XkbRedirectKeyAction act; /* action from which to extract vmods */

XkbSARedirectVModsMask returns the vmods0 and vmods1 fields of act converted to
an unsigned int.

void XkbSARedirectSetVMods(act, vm) /* macro */
XkbRedirectKeyAction act; /* action in which to set vmods */
unsigned int v; /* new value for virtual modifiers */

XkbSARedirectSetVModsMask sets the vmods0 and vmods1 of act from v.
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16.1.13Actions for Generating DeviceButtonPress and DeviceButtonRelease

Actions associated with XkbDeviceBtnAction structures generate DeviceButton-
Press and DeviceButtonRelease events instead of normal KeyPress and KeyRe-
lease events:

typedef struct _XkbDeviceBtnAction {
unsigned char type; /* XkbSA_DeviceBtn, XkbSA_LockDeviceBtn */
unsigned char flags; /* with type, specifies locking or unlocking */
unsigned char count; /* controls number of DeviceButtonPress and Release events */
unsigned char button; /* index of button on device */
unsigned char device; /* device ID of an X input extension device */

} XkbDeviceBtnAction;

The type field can have any one of the values shown in Table 16.17.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.18.

Table 16.17  Device Button Action Types

Type Effect
XkbSA_DeviceBtn • If the button specified by this action is logically down, the key

press and corresponding release are ignored and have no effect.
If the device or button specified by this action are illegal, this
action behaves like XkbSA_NoAction.

• Otherwise, key presses cause one or more input extension
device events instead of the usual key press event. If the count
field is zero, a key press generates a single DeviceButton-
Press event. If count is greater than zero, a key press event
generates count pairs of DeviceButtonPress and Device-
ButtonRelease events.

• If count is zero, a key release generates an input extension
DeviceButtonRelease event that matches the event gener-
ated by the corresponding key press. If count is nonzero, a key
release does not cause a DeviceButtonRelease event. Key
releases never cause KeyRelease events.

XkbSA_LockDeviceBtn • If the device or button specified by this action are illegal, this
action behaves like XkbSA_NoAction.

• Otherwise, if the specified button is not locked and the
XkbSA_LockNoLock bit is not set in the flags field, a key
press generates an input extension DeviceButtonPress
event instead of a KeyPress event and locks the button. If the
button is already locked or if XkbSA_LockNoLock bit is set in
the flags field, the key press is ignored and has no effect.

• If the corresponding key press was ignored, and if the
XkbSA_LockNoUnlock bit is not set in the flags field, a key
release generates an input extension DeviceButtonRe-
lease event instead of a KeyRelease event and unlocks the
button. If the corresponding key press locked a button, the key
release is ignored and has no effect.

Table 16.18  Device Button Action Flags

Flag Meaning
XkbSA_LockNoLock If set, and the action type is XkbSA_LockDeviceBtn, the

server only unlocks the button.
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16.1.14Actions for Simulating Events from Device Valuators

A valuator manipulates a range of values for some entity, like a mouse axis, a slider or a
dial. Actions associated with XkbDeviceValuatorAction structures are used to simu-
late events from one or two input extension device valuators.

typedef struct _XkbDeviceValuatorAction {
unsigned char type; /*XkbSA_DeviceValuator */
unsigned char device; /* device ID */
unsigned char v1_what; /* determines how valuator is to behave for valuator 1 */
unsigned char v1_ndx; /* specifies a real valuator */
unsigned char v1_value; /* the value for valuator 1 */
unsigned char v2_what; /* determines how valuator is to behave for valuator 2 */
unsigned char v2_ndx; /* specifies a real valuator */
unsigned char v2_value; /* the value for valuator 1 */

} XkbDeviceValuatorAction;

If device is illegal or if neither v1_ndx nor v2_ndx specifies a legal valuator, this action
behaves like XkbSA_NoAction.

The low four bits of v1_what and v2_what specify the corresponding scale value (denoted
val<n>Scale in Table 16.17), if needed. The high four bits of v1_what and v2_what specify
the operation to perform to set the values. The high four bits of v1_what and v2_what can
have the values shown in Table 16.17; the use of val<n>Scale is shown in that table
also.

Illegal values for XkbSA_SetValRelative or XkbSA_SetValAbsolute are clamped into
range. Note that all of these possibilities are legal for absolute valuators. For relative valuators,
only XkbSA_SetValRelative is permitted. Part of the input extension description of a device
is the range of legal values for all absolute valuators, whence the maximum and minimum legal
values shown in Table 16.17.

The following two masks are provided as a convenience to select either portion of
v1_what or v2_what:

#define XkbSA_ValOpMask (0x70)
#define XkbSA_ValScaleMask (0x07)

XkbSA_LockNoUnlock If set, and the action type is XkbSA_LockDeviceBtn, the
server only locks the button.

Table 16.19  Device Valuator v<n>_what High Bits Values

Value of high bits Effect
XkbSA_IgnoreVal No action
XkbSA_SetValMin v<n>_value is set to its minimum legal value.
XkbSA_SetValCenter v<n>_value is centered (to (max-min)/2).
XkbSA_SetValMax v<n>_value is set to its maximum legal value.
XkbSA_SetValRelative v<n>_value * (2val<n>Scale) is added to v<n>_value.
XkbSA_SetValAbsolute v<n>_value is set to (2val<n>Scale).

Table 16.18  Device Button Action Flags

Flag Meaning
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v1_ndx and v2_ndx specify valuators that actually exists. For example, most mice have
two valuators (x and y axes) so the only legal values for a mouse would be 0 and 1. For a
dial box with eight dials, any value in the range 0..7 would be correct.

16.1.15Obtaining Key Actions for Keys from the Server

To update the actions (the key_acts array) for a subset of the keys in a keyboard descrip-
tion, use XkbGetKeyActions.

Status XkbGetKeyActions(dpy, first, num, xkb)
Display * dpy; /* connection to X server */
unsigned int first; /* keycode of first key of interest */
unsigned int num; /* number of keys desired */
XkbDescPtr xkb; /* pointer to keyboard description where result is stored */

XkbGetKeyActions sends a request to the server to obtain the actions for num keys on the
keyboard starting with key first. It waits for a reply and returns the actions in the
server->key_acts field of xkb. If successful, XkbGetKeyActions returns Success. The xkb
parameter must be a pointer to a valid Xkb keyboard description.

If the server map in the xkb parameter has not been allocated, XkbGetKeyActions allocates
and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyActions returns BadAccess. If num is less than 1 or
greater than XkbMaxKeyCount, XkbGetKeyActions returns BadValue. If any allocation
errors occur, XkbGetKeyActions returns BadAlloc.

16.1.16Changing the Number of Actions Bound to a Key

To change the number of actions bound to a key, use XkbResizeKeyAction.

XkbAction *XkbResizeKeyActions(xkb, key, needed)
XkbDescRec * xkb; /* keyboard description to change */
int key; /* keycode of key to change */
int needed; /* new number of actions required */

The xkb parameter points to the keyboard description containing the key whose number of
actions is to be changed. The key parameter is the keycode of the key to change, and
needed specifies the new number of actions required for the key.

XkbResizeKeyActions reserves the space needed for the actions and returns a pointer to the
beginning of the new array that holds the actions. It can change the acts, num_acts, and
size_acts fields of xkb->server if it is necessary to reallocate the acts array.

If needed is greater than the current number of keysyms for the key, XkbResizeKeyActions
initializes all new actions in the array to NoAction.

Because the number of actions needed by a key is normally computed as width * number
of groups, and XkbResizeKeyActions does not modify either the width or number of groups
for the key, a discrepancy exists on return from XkbResizeKeyActions between the space
allocated for the actions and the number required. The unused entries in the list of actions
returned by XkbResizeKeyActions are not preserved across future calls to any of the map
editing functions, so you must update the key actions (which updates the width and num-
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ber of groups for the key) before calling another allocator function. A call to XkbChange-
TypesOfKey updates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActions returns NULL.

Note A change to the number of actions bound to a key should be accompanied by a change
in the number of symbols bound to a key. Refer to section 15.3.7 for more information
on changing the number of symbols bound to a key.

16.2 Key Behavior

Key behavior refers to the demeanor of a key. For example, the expected behavior of the
CapsLock key is that it logically locks when pressed, and then logically unlocks when
pressed again.

16.2.1 Radio Groups

Keys that belong to the same radio group have the XkbKB_RadioGroup type in the type
field and the radio group index specified in the data field in the XkbBehavior structure.
If the radio group has a name in the XkbNamesRec structure, the radio group index is the
index into the radio_group array in the XkbNamesRec structure. A radio group key when
pressed stays logically down until another key in the radio group is pressed, when the first
key becomes logically up and the new key becomes logically down. Setting the
XkbKB_RGAllowNone bit in the behavior for all of the keys of the radio group means that
pressing the logically down member of the radio group causes it to logically release, in
which case none of the keys of the radio group would be logically down. If
XkbKB_RGAllowNone is not set, there is no way to release the logically down member of
the group.

The low five bits of the data field of the XkbBehavior structure are the group number,
the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

16.2.2 The XkbBehavior Structure

The behaviors field of the server map is an array of XkbBehavior structures, indexed by
keycode, and contains the behavior for each key. The XkbBehavior structure is defined
as follows:

typedef struct _XkbBehavior {
unsigned char  type; /* behavior type + optional XkbKB_Permanent bit */
unsigned char  data;

} XkbBehavior;

The type field specifies the Xkb behavior, and the value of the data field depends on the
type. Xkb supports the key behaviors shown in Table 16.20.

Table 16.20  Key Behaviors

Type Effect
XkbKB_Default Press and release events are processed normally. The data field is unused.
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Xkb also provides the mask, XkbKB_Permanent to specify whether the key behavior
type should be simulated by Xkb or whether the key behavior describes an unalterable
physical, electrical, or software aspect of the keyboard. If the XkbKB_Permanent bit is
not set in the type field, Xkb simulates the behavior in software. Otherwise, Xkb relies
upon the keyboard to implement the behavior.

16.2.3 Obtaining Key Behaviors for Keys from the Server

To obtain the behaviors (the behaviors array) for a subset of the keys in a keyboard
description from the server, use XkbGetKeyBehaviors:

Status XkbGetKeyBehaviors(dpy, first, num, xkb)
Display * dpy; /* connection to server */
unsigned int first; /* keycode of first key to get */
unsigned int num; /* number of keys for which behaviors are desired */
XkbDescPtr xkb; /* Xkb description to contain the result */

XkbGetKeyBehaviors sends a request to the server to obtain the behaviors for num keys on
the keyboard starting with the key whose keycode is first. It waits for a reply and returns
the behaviors in the server->behaviors field of xkb. If successful, XkbGetKeyBehaviors
returns Success.

If the server map in the xkb parameter has not been allocated, XkbGetKeyBehaviors allo-
cates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyBehaviors returns BadAccess. If num is less than 1 or
greater than XkbMaxKeyCount, XkbGetKeyBehaviors returns BadValue. If any alloca-
tion errors occur, XkbGetKeyBehaviors returns BadAlloc.

XkbKB_Lock If a key is logically up (that is, the corresponding bit of the core key map
is cleared) when it is pressed, the key press is processed normally and the
corresponding release is ignored. If the key is logically down when
pressed, the key press is ignored but the corresponding release is pro-
cessed normally. The data field is unused.

XkbKB_RadioGroup If another member of the radio group is logically down (all members of
the radio group have the same index, specified in data) when a key is
pressed, the server synthesizes a key release for the member that is logi-
cally down and then processes the new key press event normally.
If the key itself is logically down when pressed, the key press event is
ignored, but the processing of the corresponding key release depends on
the value of the Xkb_RGAllowNone bit in flags. If it is set, the key
release is processed normally; otherwise, the key release is also ignored.
All other key release events are ignored.

XkbKB_Overlay1 If the Overlay1 control is enabled (see section 10.4), data is interpreted
as a keycode, and events from this key are reported as if they came from
data’s keycode. Otherwise, press and release events are processed nor-
mally.

XkbKB_Overlay2 If the Overlay2 control is enabled (see section 10.4), data is interpreted
as a keycode, and events from this key are reported as if they came from
data’s keycode. Otherwise, press and release events are processed nor-
mally.

Table 16.20  Key Behaviors

Type Effect
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16.3 Explicit Components—Avoiding Automatic Remapping by the Server

Whenever a client remaps the keyboard using core protocol requests, Xkb examines the
map to determine likely default values for the components that cannot be specified using
the core protocol (see section 17.1.2 for more information on how Xkb chooses the default
values).

This automatic remapping might replace definitions explicitly requested by an application,
so the Xkb keyboard description defines an explicit components mask for each key. Any
aspects of the automatic remapping listed in the explicit components mask for a key are
not changed by the automatic keyboard mapping.

The explicit components masks are held in the explicit field of the server map, which is an
array indexed by keycode. Each entry in this array is a mask that is a bitwise inclusive OR
of the values shown in Table 16.21.

16.3.1 Obtaining Explicit Components for Keys from the Server

To obtain the explicit components (the explicit array) for a subset of the keys in a keyboard
description, use XkbGetKeyExplicitComponents.

Status XkbGetKeyExplicitComponents(dpy, first, num, xkb)
Display * dpy; /* connection to server */
unsigned int first; /* keycode of first key to fetch */
unsigned int num; /* number of keys for which to get explicit info */
XkbDescPtr xkb; /* Xkb description in which to put results */

XkbGetKeyExplicitComponents sends a request to the server to obtain the explicit compo-
nents for num keys on the keyboard starting with key first. It waits for a reply and returns
the explicit components in the server->explicit array of xkb. If successful, XkbGetKeyEx-
plicitComponents returns Success. The xkb parameter must be a pointer to a valid Xkb
keyboard description.

Table 16.21  Explicit Component Masks

Bit in Explicit Mask Value Protects Against
ExplicitKeyType1 (1<<0) Automatic determination of the key type associated with

Group1.
ExplicitKeyType2 (1<<1) Automatic determination of the key type associated with

Group2.
ExplicitKeyType3 (1<<2) Automatic determination of the key type associated with

Group3.
ExplicitKeyType4 (1<<3) Automatic determination of the key type associated with

Group4.
ExplicitInterpret (1<<4) Application of any of the fields of a symbol interpretation

to the key in question.
ExplicitAutoRepeat (1<<5) Automatic determination of auto-repeat status for the key,

as specified in a symbol interpretation.
ExplicitBehavior (1<<6) Automatic assignment of the XkbKB_Lock behavior to the

key, if the XkbSI_LockingKey flag is set in a symbol
interpretation.

ExplicitVModMap (1<<7) Automatic determination of the virtual modifier map for
the key based on the actions assigned to the key and the
symbol interpretations that match the key.
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If the server map in the xkb parameter has not been allocated, XkbGetKeyExplicitCompo-
nents allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyExplicitComponents returns BadMatch. If num is less than
1 or greater than XkbMaxKeyCount, XkbGetKeyExplicitComponents returns BadValue.
If any allocation errors occur, XkbGetKeyExplicitComponents returns BadAlloc.

16.4 Virtual Modifier Mapping

The vmods member of the server map is a fixed-length array containing XkbNumVir-
tualMods entries. Each entry corresponds to a virtual modifier and provides the binding
of the virtual modifier to the real modifier bits. Each entry in the vmods array is a bitwise
inclusive OR of the legal modifier masks:

ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

The vmodmap member of the server map is similar to the modmap array of the client map
(see section 15.4), but is used to define the virtual modifier mapping for each key. Like the
modmap member, it is indexed by keycode, and each entry is a mask representing the vir-
tual modifiers bound to the corresponding key:

• Each of the bits in a vmodmap entry represents an index into the vmods member. That
is, bit 0 of a vmodmap entry refers to index 0 of the vmods array, bit 1 refers to index 1,
and so on.

• If a bit is set in the vmodmap entry for a key, that key is bound to the corresponding vir-
tual modifier in the vmods array.

The vmodmap and vmods members of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings.
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The overall relationship of fields dealing with virtual modifiers in an Xkb keyboard
description are shown in Figure 16.2.

Figure 16.2 Virtual Modifier Relationships

16.4.1 Obtaining Virtual Modifier Bindings from the Server

To obtain a subset of the virtual modifier bindings (the vmods array) in a keyboard descrip-
tion, use XkbGetVirtualMods:

Status XkbGetVirtualMods(dpy, which, xkb)
Display * dpy; /* connection to server */
unsigned int which; /* mask indicating virtual modifier bindings to get */
XkbDescPtr xkb; /* Xkb description where results will be placed */

XkbGetVirtualMods sends a request to the server to obtain the vmods entries for the virtual
modifiers specified in the mask, which, and waits for a reply. See section 7.1 for a descrip-
tion of how to determine the virtual modifier mask. For each bit set in which, XkbGetVir-
tualMods updates the corresponding virtual modifier definition in the server->vmods
array of xkb. The xkb parameter must be a pointer to a valid Xkb keyboard description. If
successful, XkbGetVirtualMods returns Success.

If the server map has not been allocated in the xkb parameter, XkbGetVirtualMods allo-
cates and initializes it before obtaining the virtual modifier bindings.
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If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetVirtualMods returns BadMatch. Any errors in allocation
cause XkbGetVirtualMods to return BadAlloc.

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server

To obtain the virtual modifier map (the vmodmap array) for a subset of the keys in a key-
board description, use XkbGetKeyVirtualModMap:

Status XkbGetKeyVirtualModMap(dpy, first, num, xkb)
Display * dpy; /* connection to server */
unsigned int first; /* keycode of first key to fetch */
unsigned int num; /* # keys for which virtual mod maps are desired */
XkbDescPtr xkb; /* Xkb description where results will be placed */

XkbGetKeyVirutalModmap sends a request to the server to obtain the virtual modifier
mappings for num keys on the keyboard starting with key first. It waits for a reply and
returns the virtual modifier mappings in the server->vmodmap array of xkb. If successful,
XkbGetKeyVirtualModMap returns Success. The xkb parameter must be a pointer to a
valid Xkb keyboard description

If the server map in the xkb parameter has not been allocated, XkbGetKeyVirtualModMap
allocates and initializes it before obtaining the virtual modifier mappings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyVirtualModMap returns BadMatch. If num is less than 1
or greater than XkbMaxKeyCount, XkbGetKeyVirtualModMap returns BadValue. If any
allocation errors occur, XkbGetKeyVirtualModMap returns BadAlloc.
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17 The Xkb Compatibility Map

As shown in Figure 17.1, the X server is normally dealing with more than one client, each
of which may be receiving events from the keyboard, and each of which may issue
requests to modify the keyboard in some manner. Each client may be either Xkb-unaware,
Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware or Xkb-unaware.
If the server is Xkb-unaware, Xkb state and keyboard mappings are not involved in any
manner, and Xkb-aware clients may not issue Xkb requests to the server. If the server is
Xkb-aware, the server must be able to deliver events and accept requests in which the key-
board state and mapping are compatible with the mode in which the client is operating.
Consequently, for some situations, conversions must be made between Xkb state / key-
board mappings and core protocol state / keyboard mappings, and vice versa.

Figure 17.1 Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a client that
deals with multiple servers may need to configure keyboards on different servers to be
similar and the different servers may not all be Xkb-aware. Finally, a client may be deal-
ing with descriptions of keyboards (files, and so on) that are based on core protocol and
therefore may need to be able to map these descriptions to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard state and
an Xkb keyboard mapping plus a compatibility map used to convert from Xkb compo-
nents to core components and vice versa. In addition, the server also maintains a core key-
board mapping that approximates the Xkb keyboard mapping. The core keyboard
mapping may be updated piecemeal, on a per-key basis. When the server receives a core
protocol ChangeKeyboardMapping or SetModifierMapping request, it updates its
core keyboard mapping, then uses the compatibility map to update its Xkb keyboard map-
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ping. When the server receives an XkbSetMap request, it updates those portions of its
Xkb keyboard mapping specified by the request, then uses its compatibility map to update
the corresponding parts of its core keyboard map. Consequently, the server’s Xkb key-
board map and also its core keyboard map may contain components that were set directly
and others that were computed. Figure 17.2 illustrates these relationships.

Note The core keyboard map is contained only in the server, not in any client-side data
structures.

Figure 17.2 Server Derivation of State and Keyboard Mapping Components
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transformed to achieve an approximately equivalent change to the core keyboard map-
ping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that subsequent
transformations have a particular result.

17.1 The XkbCompatMap Structure

All configurable aspects of mapping Xkb state and configuration to and from core proto-
col state and configuration are defined by a compatibility map, contained in an XkbCom-
patMap structure; plus a set of explicit override controls used to prevent particular
components of type 2 (core-to-Xkb keyboard mapping) transformations from automati-
cally occurring. These explicit override controls are maintained in a separate data structure
discussed in section 16.3.

The compat member of an Xkb keyboard description (XkbDescRec) points to the
XkbCompatMap structure:

typedef struct _XkbCompatMapRec {
XkbSymInterpretPtr sym_interpret; /* symbol based key semantics*/
XkbModsRec groups[XkbNumKbdGroups]; /* group => modifier map */
unsigned short num_si; /* # structures used in sym_interpret */
unsigned short size_si; /* # structures allocated in sym_interpret */

} XkbCompatMapRec, *XkbCompatMapPtr;

Figure 17.3 Xkb Compatibility Data Structures

The subsections that follow discuss how the compatibility map and explicit override con-
trols are used in each of the three cases where compatibility transformations are made.

17.1.1 Xkb State to Core Protocol State Transformation

As shown in Figure 17.3, there are four group compatibility maps (contained in groups
[0..3]) in the XkbCompatMapRec structure, one per possible Xkb group. Each group com-
patibility map is a modifier definition (see section 7.2 for a description of modifier defini-

num_si

size_si

Group
compatibility

maps

groups[0]

groups[1]

groups[2]

groups[3]

compat

XkbDescRec

sym_interpret

XkbCompatMapRec
XkbSymInterpretRec(s)

0

num_si - 1

size_si - 1



November 10, 1997 Library Version 1.0/Document Revision 1.1 170

The X Keyboard Extension 17   The Xkb Compatibility Map

tions). The mask component of the definition specifies which real modifiers should be set
in the core protocol state field when the corresponding group is active. Because only one
group is active at any one time, only one of the four possible transformations is ever
applied at any one point in time. If the device described by the XkbDescRec does not sup-
port four groups, the extra groups fields are present, but undefined.

Normally, the Xkb-aware server reports keyboard state in the state member of events such
as a KeyPress event and ButtonPress event, encoded as follows:

bits meaning
15 0
13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

For Xkb-unaware clients, only core protocol keyboard information may be reported.
Because core protocol does not define the group index, the group index is mapped to mod-
ifier bits as specified by the groups[group index] field of the compatibility map (the bits
set in the compatibility map are ORed into bits 0-7 of the state), and bits 13-14 are
reported in the event as zero.

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation

When a core protocol keyboard mapping request is received by the server, the server’s
core keyboard map is updated, and then the Xkb map maintained by the server is updated.
Because a client may have explicitly configured some of the Xkb keyboard mapping in the
server, this automatic regeneration of the Xkb keyboard mapping from the core protocol
keyboard mapping should not modify any components of the Xkb keyboard mapping that
were explicitly set by a client. The client must set explicit override controls to prevent this
from happening (see section 16.3). The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols on
keys in the Xkb keyboard map. The core keyboard mapping is of fixed width, so each
key in the core mapping has the same number of symbols associated with it. The Xkb
mapping allows a different number of symbols to be associated with each key; those
symbols may be divided into a different number of groups (1-4) for each key. For each
key, this process therefore involves partitioning the fixed number of symbols from the
core mapping into a set of variable-length groups with a variable number of symbols
in each group. For example, if the core protocol map is of width five, the partition for
one key might result in one group with two symbols and another with three symbols.
A different key might result in two groups with two symbols plus a third group with
one symbol. The core protocol map requires at least two symbols in each of the first
two groups.

1a. For each changed key, determine the number of groups represented in the new core
keyboard map. This results in a tentative group count for each key in the Xkb map.

1b. For each changed key, determine the number of symbols in each of the groups
found in step 1a. There is one explicit override control associated with each of the
four possible groups for each Xkb key, ExplicitKeyType1 through
ExplicitKeyType4. If no explicit override control is set for a group, the number
of symbols used for that group from the core map is two.  If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb
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group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbols in each of groups
one and two, the number of symbols used for groups one and two is the maximum
of 2 or the width of the Xkb group.

1c. For each changed key, assign the symbols in the core map to the appropriate group
on the key. If the total number of symbols required by the Xkb map for a particular
key needs more symbols than the core protocol map contains, the additional sym-
bols are taken to be NoSymbol keysyms appended to the end of the core set. If the
core map contains more symbols than are needed by the Xkb map, trailing sym-
bols in the core map are discarded. In the absence of an explicit override for group
one or two, symbols are assigned in order by group; the first symbols in the core
map are assigned to group one, in order, followed by group two, and so on. For
example, if the core map contained eight symbols per key, and a particular Xkb
map contained 2 symbols for G1 and G2 and three for G3, the symbols would be
assigned as (G is group, L is shift level):

G1L1 G1L2 G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L1, G1L2, G2L1, G2L2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete
sequence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

G1L1 G1L2 G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 G4L1 G4L2 G4L3

As previously noted, the core protocol map requires at lease two symbols in
groups one and two. Because of this, if an explicit override control for an Xkb key
is set and group one and / or group two is of width one, it is not possible to gener-
ate the symbols taken from the core protocol set and assigned to position G1L2
and / or G2L2.

1d. For each group on each changed key, assign a key type appropriate for the symbols
in the group.

1e. For each changed key, remove any empty or redundant groups.

At this point, the groups and their associated symbols have been assigned to the corre-
sponding key definitions in the Xkb map.

2. Apply symbol interpretations to modify key operation. This phase is completely
skipped if the ExplicitInterpret override control bit is set in the explicit controls
mask for the Xkb key (see section 16.3).

2a. For each symbol on each changed key, attempt to match the symbol and modifiers
from the Xkb map to a symbol interpretation describing how to generate the sym-
bol.

2b. When a match is found in step 2a, apply the symbol interpretation to change the
semantics associated with the symbol in the Xkb key map. If no match is found,
apply a default interpretation.
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The symbol interpretations used in step 2 are configurable and may be specified using
XkbSymInterpretRec structures referenced by the sym_interpret field of an XkbCom-
patMapRec (see Figure 17.3).

Symbol Interpretations — the XkbSymInterpretRec Structure

Symbol interpretations are used to guide the X server when it modifies the Xkb keymap in
step 2. An initial set of symbol interpretations is loaded by the server when it starts. A cli-
ent may add new ones using XkbSetCompatMap (see section 17.4).

Symbol interpretations result in key semantics being set. When a symbol interpretation is
applied, the following components of server key event processing may be modified for the
particular key involved:

Virtual modifier map
Auto repeat
Key behavior (may be set to XkbKB_Lock)
Key action (see section 16.1)

The XkbSymInterpretRec structure specifies a symbol interpretation:

typedef struct {
KeySym sym; /* keysym of interest or NULL */
unsigned char flags; /* XkbSI_AutoRepeat, XkbSI_LockingKey */
unsigned char match; /* specifies how mods is interpreted */
unsigned char mods; /* modifier bits, correspond to eight real modifiers */
unsigned char virtual_mod; /* 1 modifier to add to key virtual mod map */
XkbAnyAction act; /* action to bind to symbol position on key */

} XkbSymInterpretRec,*XkbSymInterpretPtr;

If sym is not NULL, it limits the symbol interpretation to keys on which that particular key-
sym is selected by the modifiers matching the criteria specified by mods and match. If sym
is NULL, the interpretation may be applied to any symbol selected on a key when the mod-
ifiers match the criteria specified by mods and match.

match must be one of the values shown in Table 17.1 and specifies how the real modifiers
specified in mods are to be interpreted.

In addition to the above bits, match may contain the XkbSI_LevelOneOnly bit, in which
case the modifier match criteria specified by mods and match applies only if sym is in level

Table 17.1  Symbol Interpretation Match Criteria

Match Criteria Value Effect
XkbSI_NoneOf (0) None of the bits that are on in mods can be set, but

other bits can be.
XkbSI_AnyOfOrNone (1) Zero or more of the bits that are on in mods can be set,

as well as others.
XkbSI_AnyOf (2) One or more of the bits that are on in mods can be set, as

well as any others.
XkbSI_AllOf (3) All of the bits that are on in mods must be set, but oth-

ers may be set as well.
XkbSI_Exactly (4) All of the bits that are on in mods must be set, and no

other bits may be set.
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one of its group; otherwise, mods and match are ignored and the symbol matches a condi-
tion where no modifiers are set.

#define XkbSI_LevelOneOnly (0x80) /* use mods + match only if sym is level 1 */

If no matching symbol interpretation is found, the server uses a default interpretation
where:

sym = 0
flags = XkbSI_AutoRepeat
match = XkbSI_AnyOfOrNone
mods = 0
virtual_mod = XkbNoModifier
act = SA_NoAction

When a matching symbol interpretation is found in step 2a, the interpretation is applied to
modify the Xkb map as follows.

The act field specifies a single action to be bound to the symbol position; any key event
that selects the symbol causes the action to be taken. Valid actions are defined in section
16.1.

If the Xkb keyboard map for the key does not have its ExplicitVModMap control set, the
XkbSI_LevelOneOnly bit and symbol position are examined. If the
XkbSI_LevelOneOnly bit is not set in match or the symbol is in position G1L1, the
virtual_mod field is examined. If virtual_mod is not XkbNoModifier, virtual_mod specifies
a single virtual modifier to be added to the virtual modifier map for the key. virtual_mod is
specified as an index in the range [0..15].

If the matching symbol is in position G1L1 of the key, two bits in the flags field poten-
tially specify additional behavior modifications:

#define XkbSI_AutoRepeat (1<<0) /* key repeats if sym is in position G1L1 */
#define XkbSI_LockingKey (1<<1) /* set KB_Lock behavior if sym is in psn G1L1 */

If the Xkb keyboard map for the key does not have its ExplicitAutoRepeat control
set, its auto repeat behavior is set based on the value of the XkbSI_AutoRepeat bit. If
the XkbSI_AutoRepeat bit is set, the auto-repeat behavior of the key is turned on; other-
wise, it is turned off.

If the Xkb keyboard map for the key does not have its ExplicitBehavior control set,
its locking behavior is set based on the value of the XkbSI_LockingKey bit. If
XkbSI_LockingKey is set, the key behavior is set to KB_Lock; otherwise, it is turned off
(see section 16.3).

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

Whenever the server processes Xkb requests to change the keyboard mapping, it discards
the affected portion of its core keyboard mapping and regenerates it based on the new Xkb
mapping.

When the Xkb mapping for a key is transformed to a core protocol mapping, the symbols
for the core map are taken in the following order from the Xkb map:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L1-n G4L1-n
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If group one is of width one in the Xkb map, G1L2 is taken to be NoSymbol; similarly, if
group two is of width one in the Xkb map, G2L2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard, the sym-
bols for group one are repeated to fill in the missing core components. For example, an
Xkb key with a single width-three group would be mapped to a core mapping counting
three groups as:

G1L1 G1L2 G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry, a modi-
fier mapping is generated as well. The modifier mapping contains all of the modifiers
affected by any of the actions associated with the key combined with all of the real modi-
fiers associated with any of the virtual modifiers bound to the key. In addition, if any of
the actions associated with the key affect any component of the keyboard group, all of the
modifiers in the mask field of all of the group compatibility maps are added to the modi-
fier mapping as well. While an XkbSA_ISOLock action can theoretically affect any mod-
ifier, if the Xkb mapping for a key specifies an XkbSA_ISOLock action, only the
modifiers or group that are set by default are added to the modifier mapping.

17.2 Getting Compatibility Map Components From the Server

Use XkbGetCompatMap to fetch any combination of the current compatibility map com-
ponents from the server. When another client modifies the compatibility map, you are
notified if you have selected for XkbCompatMapNotify events (see section 17.5). Xkb-
GetCompatMap is particularly useful when you receive an event of this type, as it allows
you to update your program’s version of the compatibility map to match the modified ver-
sion now in the server. If your program is dealing with multiple servers and needs to con-
figure them all in a similar manner, the updated compatibility map may be used to
reconfigure other servers.

Note To make a complete matching configuration you must also update the explicit override
components of the server state.

Status XkbGetCompatMap(display, which, xkb)
Display * display; /* connection to server */
unsigned int which; /* mask of compatibility map components to fetch */
XkbDescRec * xkb; /* keyboard description where results placed */

XkbGetCompatMap fetches the components of the compatibility map specified in which
from the server specified by display and places them in the compat structure of the key-
board description xkb. Valid values for which are an inclusive OR of the values shown in
Table 17.2.

If no compatibility map structure is allocated in xkb upon entry, XkbGetCompatMap allo-
cates one. If one already exists, its contents are overwritten with the returned results.

Table 17.2  Compatibility Map Component Masks

Mask Value Affecting
XkbSymInterpMask (1<<0) Symbol interpretations
XkbGroupCompatMask (1<<1) Group maps
XkbAllCompatMask (0x3) All compatibility map components
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XkbGetCompatMap fetches compatibility map information for the device specified by the
device_spec field of xkb. Unless you have specifically modified this field, it is the default
keyboard device. XkbGetCompatMap returns Success if successful, BadAlloc if it is
unable to obtain necessary storage for either the return values or work space, BadMatch if
the dpy field of the xkb argument is non-NULL and does not match the display argument,
and BadLength under certain conditions caused by server or Xkb implementation errors.

17.3 Using the Compatibility Map

Xkb provides several functions that make it easier to apply the compatibility map to con-
figure a client-side Xkb keyboard mapping, given a core protocol representation of part or
all of a keyboard mapping. Obtain a core protocol representation of a keyboard mapping
from an actual server (by using XGetKeyboardMapping, for example), a data file, or some
other source.

To update a local Xkb keyboard map to reflect the mapping expressed by a core format
mapping by calling the function XkbUpdateMapFromCore.

Bool XkbUpdateMapFromCore(xkb, first_key, num_keys, map_width, core_keysyms, changes)
XkbDescPtr xkb; /* keyboard description to update */
KeyCode first_key; /* keycode of first key description to update */
int num_keys; /* number of key descriptions to update */
int map_width; /* width of core protocol keymap */
KeySym * core_keysyms; /* symbols in core protocol keymap */
XkbChangesPtr changes; /* backfilled with changes made to Xkb */

XkbUpdateMapFromCore interprets input argument information representing a keyboard
map in core format to update the Xkb keyboard description passed in xkb. Only a portion
of the Xkb map is updated — the portion corresponding to keys with keycodes in the
range first_key through first_key + num_keys - 1. If XkbUpdateMapFromCore is being called
in response to a MappingNotify event, first_key and num_keys are reported in the Map-
pingNotify event. core_keysyms contains the keysyms corresponding to the keycode
range being updated, in core keyboard description order. map_width is the number of key-
syms per key in core_keysyms. Thus, the first map_width entries in core_keysyms are for
the key with keycode first_key, the next map_width entries are for key first_key + 1, and so
on.

In addition to modifying the Xkb keyboard mapping in xkb, XkbUpdateMapFromCore
backfills the changes structure whose address is passed in changes to indicate the modifi-
cations that were made. You may then use changes in subsequent calls such as XkbSet-
Map, to propagate the local modifications to a server.



November 10, 1997 Library Version 1.0/Document Revision 1.1 176

The X Keyboard Extension 17   The Xkb Compatibility Map

When dealing with core keyboard mappings or descriptions, it is sometimes necessary to
determine the Xkb key types appropriate for the symbols bound to a key in a core key-
board mapping. Use XkbKeyTypesForCoreSymbols for this purpose:

int XkbKeyTypesForCoreSymbols(map_width, core_syms, protected, types_inout,
xkb_syms_rtrn)

XkbDescPtr xkb; /* keyboard description in which to place symbols*/
int map_width; /* width of core protocol keymap in xkb_syms_rtrn */
KeySym * core_syms; /* core protocol format array of KeySyms */
unsigned int protected; /* explicit key types */
int * types_inout; /* backfilled with the canonical types bound to groups one and

two for the key */
KeySym * xkb_syms_rtrn; /* backfilled with symbols bound to the key in the Xkb

mapping */

XkbKeyTypesForCoreSymbols expands the symbols in core_syms and types in types_inout
according to the rules specified in section 12 of the core protocol, then chooses canonical
key types (canonical key types are defined in section 15.2.1) for groups 1 and 2 using the
rules specified by the Xkb protocol and places them in xkb_syms_rtrn, which will be
non-NULL.

A core keymap is a two-dimensional array of keysyms. It has map_width columns and
max_key_code rows. XkbKeyTypesForCoreSymbols takes a single row from a core key-
map, determines the number of groups associated with it, the type of each group, and the
symbols bound to each group. The return value is the number of groups, types_inout has
the types for each group, and xkb_syms_rtrn has the symbols in Xkb order (that is, groups
are contiguous, regardless of size).

protected contains the explicitly protected key types. There is one  explicit override con-
trol associated with each of the four possible groups for each Xkb key,
ExplicitKeyType1 through ExplicitKeyType4; protected is an inclusive OR of
these controls. map_width is the width of the core keymap and is not dependent on any
Xkb definitions. types_inout is an array of four type indices. On input, types_inout con-
tains the indices of any types already assigned to the key, in case they are explicitly pro-
tected from change.

Upon return, types_inout contains any automatically selected (that is, canonical) types
plus any protected types. Canonical types are assigned to all four groups if there are
enough symbols to do so. The four entries in types_inout correspond to the four groups for
the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb keyboard
compatibility map do change, the semantics of the key may be modified. To apply the new
compatibility mapping to an individual key to get its semantics updated, use XkbApply-
CompatMapToKey.

Bool XkbApplyCompatMapToKey(xkb, key, changes)
  XkbDescPtr xkb; /* keyboard description to be updated */
  KeyCode key; /* key to be updated */
  XkbChangesPtr changes; /* notes changes to the Xkb keyboard description */

XkbApplyCompatMapToKey essentially performs the operation described in section 17.1.2
to a specific key. This updates the behavior, actions, repeat status, and virtual modifier
bindings of the key.
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17.4 Changing the Server’s Compatibility Map

To modify the server’s compatibility map, first modify a local copy of the Xkb compati-
bility map, then call XkbSetCompatMap. You may allocate a new compatibility map for
this purpose using XkbAllocCompatMap (see section 17.6). You may also use a compati-
bility map from another server, although you need to adjust the device_spec field in the
XkbDescRec accordingly. Note that symbol interpretations in a compatibility map
(sym_interpret, the vector of XkbSymInterpretRec structures) are also allocated using
this same function.

Bool XkbSetCompatMap(display, which, xkb, update_actions)
Display * display; /* connection to server */
unsigned int which; /* mask of compat map components to set */
XkbDescPtr xkb; /* source for compat map components */
Bool update_actions; /* True => apply to server’s keyboard map */

XkbSetCompatMap copies compatibility map information from the keyboard description
in xkb to the server specified in display’s compatibility map for the device specified by the
device_spec field of xkb. Unless you have specifically modified this field, it is the default
keyboard device. which specifies the compatibility map components to be set, and is an
inclusive OR of the bits shown in Table 17.2.

After updating its compatibility map for the specified device, if update_actions is True,
the server applies the new compatibility map to its entire keyboard for the device to gener-
ate a new set of key semantics, compatibility state, and a new core keyboard map. If
update_actions is False, the new compatibility map is not used to generate any modifica-
tions to the current device semantics, state, or core keyboard map. One reason for not
applying the compatibility map immediately would be if one server was being configured
to match another on a piecemeal basis; the map should not be applied until everything is
updated. To force an update at a later time, use XkbSetCompatMap specifying which as
zero and update_actions as True.

XkbSetCompatMap returns True if successful and False if unsuccessful. The server may
report problems it encounters when processing the request subsequently via protocol
errors.

To add a symbol interpretation to the list of symbol interpretations in an XkbCompatRec,
use XkbAddSymInterpret.

XkbSymInterpretPtr XkbAddSymInterpret(xkb, si, updateMap, changes)
XkbDescPtr xkb; /* keyboard description to be updated */
XkbSymInterpretPtr si; /* symbol interpretation to be added */
Bool updateMap; /* True=>apply compatibility map to keys */
XkbChangesPtr changes; /* changes are put here */

XkbAddSymInterpret adds si to the list of symbol interpretations in xkb. If updateMap is
True, it (re)applies the compatibility map to all of the keys on the keyboard. If changes is
non-NULL, it reports the parts of the keyboard that were affected (unless updateMap is
True, not much changes). XkbAddSymInterpret returns a pointer to the actual new symbol
interpretation in the list or NULL if it failed.



November 10, 1997 Library Version 1.0/Document Revision 1.1 178

The X Keyboard Extension 17   The Xkb Compatibility Map

17.5 Tracking Changes to the Compatibility Map

The server automatically generates MappingNotify events when the keyboard mapping
changes. If you wish to be notified of changes to the compatibility map, you should select
for XkbCompatMapNotify events. If you select for XkbMapNotify events, you no
longer receive the automatically generated MappingNotify events. If you subsequently
deselect XkbMapNotifyEvent delivery, you again receive MappingNotify events.

To receive XkbCompatMapNotify events under all possible conditions, use XkbSelect-
Events (see section 4.3) and pass XkbCompatMapNotifyMask in both bits_to_change
and values_for_bits.

To receive XkbCompatMapNotify events only under certain conditions, use XkbSelect-
EventDetails using XkbCompatMapNotify as the event_type and specifying the desired
map changes in bits_to_change and values_for_bits using mask bits from Table 17.2.

Note that you are notified of changes you make yourself, as well as changes made by other
clients.

The structure for the XkbCompatMapNotifyEvent is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbCompatMapNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed_groups;/* number of group maps changed */
int first_si; /* index to 1st changed symbol interpretation */
int num_si; /* number of changed symbol interpretations */
int num_total_si; /* total number of valid symbol interpretations */

} XkbCompatMapNotifyEvent;

changed_groups is the number of group compatibility maps that have changed. If you are
maintaining a corresponding copy of the compatibility map, or get a fresh copy from the
server using XkbGetCompatMap, changed_groups references
groups[0..changed_groups-1] in the XkbCompatMapRec structure.

first_si is the index of the first changed symbol interpretation, num_si is the number of
changed symbol interpretations, and num_total_si is the total number of valid symbol
interpretations. If you are maintaining a corresponding copy of the compatibility map, or
get a fresh copy from the server using XkbGetCompatMap, first_si, num_si, and
num_total_si are appropriate for use with the compat.sym_interpret vector in this struc-
ture.
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17.6 Allocating and Freeing the Compatibility Map

If you are modifying the compatibility map, you need to allocate a new compatibility map
if you do not already have one available. To do so, use XkbAllocCompatMap.

Status XkbAllocCompatMap(xkb, which, num_si)
XkbDescPtr xkb; /* keyboard description in which to allocate compat map */
unsigned int which; /* mask of compatibility map components to allocate */
unsigned int num_si; /* number of symbol interpretations to allocate */

xkb specifies the keyboard description for which compatibility maps are to be allocated.
The compatibility map is the compat field in this structure.

which specifies the compatibility map components to be allocated (see XkbGetCompat-
Map, in section 17.2). which is an inclusive OR of the bits shown in Table 17.2.

num_si specifies the total number of entries to allocate in the symbol interpretation vector
(xkb.compat.sym_interpret).

Note that symbol interpretations in a compatibility map (the sym_interpret vector of Xkb-
SymInterpretRec structures) are also allocated using this same function. To ensure that
there is sufficient space in the symbol interpretation vector for entries to be added, use
XkbAllocCompatMap specifying which as XkbSymInterpretMask and the number of
free symbol interpretations needed in num_si.

XkbAllocCompatMap returns Success if successful, BadMatch if xkb is NULL, or Bad-
Alloc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of one, use XkbFreeCompatMap.

void XkbFreeCompatMap(xkb, which, free_map)
XkbDescPtr xkb; /* Xkb description in which to free compatibility map */
unsigned int which; /* mask of compatibility map components to free */
Bool free_map; /* True => free XkbCompatMap structure itself */

which specifies the compatibility map components to be freed (see XkbGetCompatMap, in
section 17.2). which is an inclusive OR of the bits shown in Table 17.2

free_map indicates whether the XkbCompatMap structure itself should be freed. If
free_map is True, which is ignored, all non-NULL compatibility map components are
freed, and the compat field in the XkbDescRec referenced by xkb is set to NULL.
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18 Symbolic Names

The core protocol does not provide any information to clients other than that actually used
to interpret events. This makes it difficult to write an application that presents the key-
board to a user in an easy-to-understand way. Such applications have to examine the ven-
dor string and keycodes to determine the type of keyboard connected to the server and
then examine keysyms and modifier mappings to determine the effects of most modifiers
(the Shift, Lock and Control modifiers are defined by the core protocol but no seman-
tics are implied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports sym-
bolic names for most components of the keyboard extension. Most of these symbolic
names are grouped into the names component of the keyboard description.

18.1 The XkbNamesRec Structure

The names component of the keyboard description is defined as follows:

#define XkbKeyNameLength 4
#define XkbKeyNumVirtualMods 16
#define XkbKeyNumIndicators 32
#define XkbKeyNumKbdGroups 4
#define XkbMaxRadioGroups 32

typedef struct {
char name[XkbKeyNameLength]; /* symbolic key names */

} XkbKeyNameRec,*XkbKeyNamePtr;

typedef struct {
char real[XkbKeyNameLength]; /* this key name must be in the keys array */
char alias[XkbKeyNameLength]; /* symbolic key name as alias for the key */

} XkbKeyAliasRec,*XkbKeyAliasPtr;

typedef struct _XkbNamesRec {
Atom keycodes; /* identifies range and meaning of keycodes */
Atom geometry; /* identifies physical location, size, and shape of keys */
Atom symbols; /* identifies the symbols logically bound to the keys */
Atom types; /* identifies the set of key types */
Atom compat; /* identifies actions for keys using core protocol */
Atom vmods[XkbNumVirtualMods]; /* symbolic names for virtual modifiers */
Atom indicators[XkbNumIndicators]; /* symbolic names for indicators */
Atom groups[XkbNumKbdGroups]; /* symbolic names for keyboard groups */
XkbKeyNamePtr keys; /* symbolic key name array */
XkbKeyAliasPtr key_aliases; /* real/alias symbolic name pairs array */
Atom * radio_groups; /* radio group name array */
Atom phys_symbols; /* identifies the symbols engraved on the keyboard */
unsigned char num_keys; /* number of keys in the keys array */
unsigned char num_key_aliases;/* number of keys in the key_aliases array */
unsigned short num_rg; /* number of radio groups */

} XkbNamesRec,*XkbNamesPtr;/*

The keycodes name identifies the range and meaning of the keycodes returned by the key-
board in question. The geometry name, on the other hand, identifies the physical location,
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size and shape of the various keys on the keyboard. As an example to distinguish between
these two names, consider function keys on PC-compatible keyboards. Function keys are
sometimes above the main keyboard and sometimes to the left of the main keyboard, but
the same keycode is used for the key that is logically F1 regardless of physical position.
Thus, all PC-compatible keyboards share a similar keycodes name but may have different
geometry names.

Note The keycodes name is intended to be a very general description of the keycodes
returned by a keyboard; a single keycodes name might cover keyboards with differing
numbers of keys provided all keys have the same semantics when present. For exam-
ple, 101 and 102 key PC keyboards might use the same name. In these cases, applica-
tions can use the keyboard geometry name to determine which subset of the named
keycodes is in use.

The symbols name identifies the symbols logically bound to the keys. The symbols name
is a human or application-readable description of the intended locale or usage of the key-
board with these symbols. The phys_symbols name, on the other hand, identifies the sym-
bols actually engraved on the keyboard. Given this, the symbols name and phys_symbols
names might be different. For example, the description for a keyboard that has English US
engravings, but that is using Swiss German symbols might have a phys_symbols name of
“en_US” and a symbols name of “de_CH.”

The types name provides some information about the set of key types (see section 15.2)
that can be associated with the keyboard. In addition, each key type can have a name, and
each shift level of a type can have a name. Although these names are stored in the map
description with each of the types, they are accessed using the same methods as the other
symbolic names.

The compat name provides some information about the rules used to bind actions to keys
that are changed using core protocol requests.

Xkb provides symbolic names for each of the 4 keyboard groups, 16 virtual modifiers, 32
keyboard indicators, and 4 keyboard groups. These names are held in the vmods, indica-
tors, and groups fixed-length arrays.

Each key has a four-byte symbolic name. All of the symbolic key names are held in the
keys array, and num_keys reports the number of entries that are in the keys array. For each
key, the key name links keys with similar functions or in similar positions on keyboards
that report different keycodes. For example, the F1 key may emit keycode 23 on one key-
board and keycode 86 on another. By naming this key “FK01” on both keyboards, the
keyboard layout designer can reuse parts of keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key names to a single
key. This allows the keyboard layout designer to refer to keys using either their position or
their “function.” For example, a keyboard layout designer may wish to refer to the left
arrow key on a PC keyboard using the ISO9995-5 positional specification of A31 or using
the functional specification of LEFT. The key_aliases field holds a variable-length array
of real and alias key name pairs, and the total number of entries in the key_aliases array is
held in num_key_aliases. For each real and alias key name pair, the real field refers to the
a name in the keys array, and the alias field refers to the alias for that key. Using the pre-
vious example, the keyboard designer may use the name A31 in the keys array, but also
define the name LEFT as an alias for A31 in the key_aliases array.
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Note Key aliases defined in the geometry component of a keyboard mapping (see Chapter
13) override those defined in the keycodes component of the server database, which
are stored in the XkbNamesRec (xkb->names). Therefore, consider the key aliases
defined by the geometry before considering key aliases supplied by the XkbNames-
Rec.

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Each radio group in the keyboard description can have a name. These names are held in
the variable-length array radio_groups, and num_rg tells how many elements are in the
radio_groups array.

18.2 Symbolic Names Masks

Xkb provides several functions that work with symbolic names. Each of these functions
uses a mask to specify individual fields of the structures described above. These masks
and their relationships to the fields in a keyboard description are shown in Table 18.1.

Table 18.1  Symbolic Names Masks

Mask Bit Value Keyboard
Component Field

XkbKeycodesNameMask (1<<0) Xkb->names keycodes
XkbGeometryNameMask (1<<1) Xkb->names geometry
XkbSymbolsNameMask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameMask (1<<3) Xkb->names phys_symbols
XkbTypesNameMask (1<<4) Xkb->names type
XkbCompatNameMask (1<<5) Xkb->names compat
XkbKeyTypeNamesMask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesMask (1<<7) Xkb->map type[*].lvl_names[*]
XkbIndicatorNamesMask (1<<8) Xkb->names indicators[*]
XkbKeyNamesMask (1<<9) Xkb->names keys[*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key_aliases[*], num_key_aliases
XkbVirtualModNamesMask (1<<11) Xkb->names vmods[*]
XkbGroupNamesMask (1<<12) Xkb->names groups[*]
XkbRGNamesMask (1<<13) Xkb->names radio_groups[*], num_rg
XkbComponentNamesMask (0x3f) Xkb->names keycodes,

geometry,
symbols,
physical symbols,
types, and
compatibility map

XkbAllNamesMask (0x3fff) Xkb->names all name components
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18.3 Getting Symbolic Names From the Server

To obtain symbolic names from the server, use XkbGetNames.

Status XkbGetNames(dpy, which, Xkb)
Display * dpy; /* connection to the X server */
unsigned int which; /* mask of names or map components to be updated */
XkbDescPtr xkb /* keyboard description to be updated */

XkbGetNames retrieves symbolic names for the components of the keyboard extension
from the X server. The which parameter specifies the name components to be updated in
the xkb parameter, and is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

If the names field of the keyboard description xkb is NULL, XkbGetNames allocates and
initializes the names component of the keyboard description before obtaining the values
specified by which. If the names field of xkb is not NULL, XkbGetNames obtains the values
specified by which and copies them into the keyboard description Xkb.

If the map component of the xkb parameter is NULL, XkbGetNames does not retrieve type
or shift level names, even if XkbKeyTypeNamesMask or XkbKTLevelNamesMask are
set in which.

XkbGetNames can return Success, or BadAlloc, BadLength, BadMatch, and BadIm-
plementation errors.

To free symbolic names, use XkbFreeNames (see section 18.6)

18.4 Changing Symbolic Names on the Server

To change the symbolic names in the server, first modify a local copy of the keyboard
description and then use either XkbSetNames, or, to save network traffic, use a XkbNa-
meChangesRecstructure and call XkbChangeNames to download the changes to the
server. XkbSetNames and XkbChangeNames can generate BadAlloc, BadAtom,
BadLength, BadMatch, and BadImplementation errors.

Bool XkbSetNames(dpy, which, first_type, num_types, xkb)
Display * dpy; /* connection to the X server */
unsigned int which; /* mask of names or map components to be changed */
unsigned int first_type ; /* first type whose name is to be changed */
unsigned int num_types; /* number of types for which names are to be changed */
XkbDescPtr xkb; /* keyboard description from which names are to be taken */

Use XkbSetNames to change many names at the same time. For each bit set in which, Xkb-
SetNames takes the corresponding value (or values in the case of arrays) from the key-
board description xkb and sends it to the server.

The first_type and num_types arguments are used only if XkbKeyTypeNamesMask or
XkbKTLevelNamesMask is set in which and specify a subset of the types for which the
corresponding names are to be changed. If either or both of these mask bits are set but the
specified types are illegal, XkbSetNames returns False and does not update any of the
names specified in which. The specified types are illegal if xkb does not include a map
component or if first_type and num_types specify types that are not defined in the key-
board description.
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The XkbNameChangesRec Structure

The XkbNameChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

typedef struct _XkbNameChanges {
unsigned int changed; /* name components that have changed */
unsigned char first_type; /* first key type with a new name */
unsigned char num_types; /* number of types with new names */
unsigned char first_lvl; /* first key type with new level names */
unsigned char num_lvls; /* number of key types with new level names */
unsigned char num_aliases; /* if key aliases changed, total number of key aliases */
unsigned char num_rg; /* if radio groups changed, total number of radio groups */
unsigned char first_key; /* first key with a new name */
unsigned char num_keys; /* number of keys with new names */
unsigned short changed_vmods; /* mask of virtual modifiers for which names have changed */
unsigned long changed_indicators;/* mask of indicators for which names were changed */
unsigned char changed_groups; /* mask of groups for which names were changed */

} XkbNameChangesRec, *XkbNameChangesPtr

The changed field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The rest of the fields in
the structure specify the ranges that have changed for the various kinds of symbolic
names, as shown in Table 18.2.

XkbChangeNames provides a more flexible method for changing symbolic names than
XkbSetNames and requires the use of an XkbNameChangesRec structure.

Bool XkbChangeNames(dpy, xkb, changes)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description from which names are to be taken */
XkbNameChangesPtr changes; /* names map components to be updated on the server */

XkbChangeNames copies any names specified by changes from the keyboard description,
xkb, to the X server specified by dpy. XkbChangeNames aborts and returns False if any
illegal type names or type shift level names are specified by changes.

Table 18.2  XkbNameChanges Fields

Mask Fields Component Field

XkbKeyTypeNamesMask first_type,
num_types

Xkb->map type[*].name

XkbKTLevelNamesMask first_lvl,
num_lvls

Xkb->map type[*].lvl_names[*]

XkbKeyAliasesMask num_aliases Xkb->names key_aliases[*]

XkbRGNamesMask num_rg Xkb->names radio_groups[*]

XkbKeyNamesMask first_key,
num_keys

Xkb->names keys[*]

XkbVirtualModNamesMask changed_vmods Xkb->names vmods[*]

XkbIndicatorNamesMask changed_indicators Xkb->names indicators[*]

XkbGroupNamesMask changed_groups Xkb->names groups[*]
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18.5 Tracking Name Changes

Whenever a symbolic name changes in the server’s keyboard description, the server sends
a XkbNamesNotify event to all interested clients. To receive name notify events, use
XkbSelectEvents (see section 4.3) with XkbNamesNotifyMask in both the
bits_to_change and values_for_bits parameters.

To receive events for only specific names, use XkbSelectEventDetails. Set the event_type
parameter to XkbNamesNotify, and set both the bits_to_change and values_for_bits
detail parameter to a mask composed of a bitwise OR of masks in Table 18.1.

The structure for the XkbNamesNotify event is defined as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbNamesNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed; /* mask of name components that have changed */
int first_type; /* first key type with a new name */
int num_types; /* number of types with new names */
int first_lvl; /* first key type with new level names */
int num_lvls; /* number of key types with new level names */
int num_aliases; /* if key aliases changed, total number of key aliases */
int num_radio_groups;/* if radio groups changed, total number of radio groups */
unsigned int changed_vmods; /* mask of virtual modifiers for which names have changed */
unsigned int changed_groups; /* mask of groups for which names were changed */
unsigned int changed_indicators;/* mask of indicators for which names were changed */
int first_key; /* first key with a new name */
int num_keys; /* number of keys with new names */

} XkbNamesNotifyEvent;

The changed field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The other fields in this
event are interpreted as the like-named fields in an XkbNameChangesRec, as previously
defined.

When your application receives a XkbNamesNotify event, you can note the changed
names in a changes structure using XkbNoteNameChanges.

void XkbNoteNameChanges(old, new, wanted)
XkbNameChangesPtr old; /* XkbNameChanges structure to be updated */
XkbNamesNotifyEvent *new; /* event from which changes are to be copied */
unsigned int wanted; /* types of names for which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of the valid names mask bits shown in
Table 18.1. XkbNoteNameChanges copies any changes that are reported in new and speci-
fied in wanted into the changes record specified by old.
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To update the local copy of the keyboard description with the actual values, pass to Xkb-
GetNameChanges the results of one or more calls to XkbNoteNameChanges.

Status XkbGetNameChanges(dpy, xkb, changes)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description to which names are copied */
XkbNameChangesPtr changes; /* names components to be obtained from the server */

XkbGetNameChanges examines the changes parameter, retrieves the necessary informa-
tion from the server, and places the results into the xkb keyboard description.

XkbGetNamesChanges can generate BadAlloc, BadImplementation, and BadMatch
errors.

18.6 Allocating and Freeing Symbolic Names

Most applications do not need to directly allocate symbolic names structures. Do not allo-
cate a names structure directly using malloc or Xmalloc if your application changes the
number of key aliases or radio groups or constructs a symbolic names structure without
loading the necessary components from the X server. Instead use XkbAllocNames.

Status XkbAllocNames(xkb, which, num_rg, num_key_aliases)
XkbDescPtr xkb; /* keyboard description for which names are to be allocated */
unsigned int which; /* mask of names to be allocated */
int num_rg; /* total number of radio group names needed */
int num_key_aliases;/* total number of key aliases needed */

XkbAllocNames can return BadAlloc, BadMatch, and BadValue errors. The which
parameter is the bitwise inclusive OR of the valid names mask bits defined in Table 18.1.

Do not free symbolic names structures directly using free or XFree. Use XkbFreeNames
instead.

void XkbFreeNames(xkb, which, free_map)
XkbDescPtr xkb; /* keyboard description for which names are to be freed */
unsigned int which; /* mask of names components to be freed */
Bool free_map; /* True => XkbNamesRec structure itself should be freed */

The which parameter is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.
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19 Replacing a Keyboard “On the Fly”

Some operating system and X server implementations allow “hot plugging” of input
devices. When using these implementations, input devices can be unplugged and new
ones plugged in without restarting the software that is using those devices. There is no
provision in the standard X server for notification of client programs if input devices are
unplugged and/or new ones plugged in. In the case of the X keyboard, this could result in
the X server having a keymap that does not match the new keyboard.

If the X server implementation supports the X input device extension, a client program
may also change the X keyboard programmatically. The XChangeKeyboardDevice input
extension request allows a client to designate an input extension keyboard device as the X
keyboard, in which case the old X keyboard device becomes inaccessible except via the
input device extension. In this case, core protocol XMappingNotify and input extension
XChangeDeviceNotify events are generated to notify all clients that a new keyboard
with a new keymap has been designated.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. The server keeps track of the minimum and maximum keycodes last
reported to each client. When delivering events to a particular client, the server filters out
any events that fall outside of the valid range for the client.

Xkb provides an XkbNewKeyboardNotify event that reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an
XkbNewKeyboardNotify event when it detects a new keyboard or in response to an
XkbGetKeyboardByName request that loads a new keyboard description. Selecting for
XkbNewKeyboardNotify events allows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client requests XkbNewKeyboardNotify events, the server compares the range
of keycodes for the current keyboard to the range of keycodes that are valid for the client.
If they are not the same, the server immediately sends the client an XkbNewKeyboardNo-
tify event. Even if the “new” keyboard is not new to the server, it is new to this particu-
lar client.

When the server sends an XkbNewKeyboardNotify event to a client to inform it of a
new keycode range, it resets the stored range of legal keycodes for the client to the key-
code range reported in the event; it does not reset this range for the client if it does not sent
an XkbNewKeyboardNotify event to a client. Because Xkb-unaware clients and
Xkb-aware clients that do not request XkbNewKeyboardNotify events are never sent
these events, the server’s notion of the legal keycode range never changes, and these cli-
ents never receive events from keys that fall outside of their notion of the legal keycode
range.

Clients that have not selected to receive XkbNewKeyboardNotify events do, however,
receive the XkbNewKeyboardNotify event when a keyboard change occurs. Clients that
have not selected to receive this event also receive numerous other events detailing the
individual changes that occur when a keyboard change occurs.

Clients wishing to track changes in min_key_code and max_key_code must watch for both
XkbNewKeyboardNotify and XkbMapNotify events, because a simple mapping
change causes an XkbMapNotify event and may change the range of valid keycodes, but
does not cause an XkbNewKeyboardNotify event. If a client does not select for
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XkbNewKeyboardNotify events, the server restricts the range of keycodes reported to
the client.

In addition to filtering out-of-range key events, Xkb:

• Adjusts core protocol MappingNotify events to refer only to keys that match the
stored legal range.

• Reports keyboard mappings for keys that match the stored legal range to clients that
issue a core protocol GetKeyboardMapping request.

• Reports modifier mappings only for keys that match the stored legal range to clients
that issue a core protocol GetModifierMapping request.

• Restricts the core protocol ChangeKeyboardMapping and SetModifierMap-
ping requests to keys that fall inside the stored legal range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that the
range of legal keycodes has changed, because such clients cannot be expected to deal with
them. Xkb events and requests are not modified in this manner; all Xkb events report the
full range of legal keycodes. No requested Xkb events are discarded, and no Xkb requests
have their keycode range clamped.

The structure for the XkbNewKeyboardNotify event is defined as follows:

typedef struct _XkbNewKeyboardNotify {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event*/
Bool send_event; /* True => synthetically generated */
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbNewKeyboardNotify */
int device; /* device ID of new keyboard */
int old_device; /* device ID of old keyboard */
int min_key_code; /* min keycode of new keyboard */
int max_key_code; /* max keycode of new keyboard */
int old_min_key_code; /* min keycode of old keyboard */
int old_max_key_code; /* max keycode of old keyboard */
unsigned int changed; /* changed aspects - see masks below */
char req_major; /* major request that caused change */
char req_minor; /* minor request that caused change */

} XkbNewKeyboardNotifyEvent;

To receive name notify events, use XkbSelectEvents (see section 4.3) with XkbNewKey-
boardNotifyMask in both the bits_to_change and values_for_bits parameters. To
receive events for only specific names, use XkbSelectEventDetails. Set the event_type
parameter to XkbNewKeyboardNotify, and set both the bits_to_change and
values_for_bits detail parameter to a mask composed of a bitwise OR of masks in Table
19.1.

Table 19.1  XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotify
Event Details Value Circumstances

XkbNKN_KeycodesMask (1L<<0) Notification of keycode range changes wanted
XkbNKN_GeometryMask (1L<<1) Notification of geometry changes wanted
XkbNKN_DeviceIDMask (1L<<2) Notification of device ID changes wanted
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The req_major and req_minor fields indicate what type of keyboard change has occurred.

If req_major and req_minor are zero, the device change was not caused by a software
request to the server — a spontaneous change has occurred, such as hot-plugging a new
device. In this case, device is the device identifier for the new, current X keyboard device,
but no implementation-independent guarantee can be made about old_device. old_device
may be identical to device (an implementor is permitted to reuse the device specifier when
the device changes); or it may be different. Note that req_major and req_minor being zero
do not necessarily mean that the physical keyboard device has changed; rather, they only
imply a spontaneous change outside of software control (some systems have keyboards
that can change personality at the press of a key).

If the keyboard change is the result of an X Input Extension ChangeKeyboardDevice
request, req_major contains the input extension major opcode, and req_minor contains the
input extension request number for X_ChangeKeyboardDevice. In this case, device and
old_device are different, with device being the identifier for the new, current X keyboard
device, and old_device being the identifier for the former device.

If the keyboard change is the result of an XkbGetKeyboardByName function call, which
generates an X_kbGetKbdByName request, req_major contains the Xkb extension base
event code (see section 2.4), and req_minor contains the event code for the Xkb extension
request X_kbGetKbdByName. device contains the device identifier for the new device, but
nothing definitive can be said for old_device; it may be identical to device, or it may be
different, depending on the implementation.

XkbNKN_AllChangesMask (0x7) Includes all of the above masks

Table 19.1  XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotify
Event Details Value Circumstances
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20 Server Database of Keyboard Components

The X server maintains a database of keyboard components, identified by component
type. The database contains all the information necessary to build a complete keyboard
description for a particular device, as well as to assemble partial descriptions. Table 20.1
identifies the component types and the type of information they contain.

While a keymap is a database entry for a complete keyboard description, and therefore
logically different from the individual component database entries, the rules for process-
ing keymap entries are identical to those for the individual components. In the discussion
that follows, the term component is used to refer to either individual components or a key-
map.

There may be multiple entries for each of the component types. An entry may be either
complete or partial. Partial entries describe only a piece of the corresponding keyboard
component and are designed to be combined with other entries of the same type to form a
complete entry.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can be used to
configure any ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in which
they appear in Table 20.1; later definitions override earlier ones.

Table 20.1  Server Database Keyboard Components

Component
Type Component Primary Contents May also contain

Keymap Complete keyboard description
Normally assembled using a complete
component from each of the other types

Keycodes Symbolic name for each key
Minimum and maximum legal keycodes

Aliases for some keys
Symbolic names for indicators
Description of indicators physically
present

Types Key types Real modifier bindings and symbolic
names for some virtual modifiers

Compatibility Rules used to assign actions to keysyms Maps for some indicators
Real modifier bindings and symbolic
names for some virtual modifiers

Symbols Symbol mapping for keyboard keys
Modifier mapping
Symbolic names for groups

Explicit actions and behaviors for some
keys
Real modifier bindings and symbolic
names for some virtual modifiers

Geometry Layout of the keyboard Aliases for some keys; overrides key-
codes component aliases
Symbolic names for some indicators
Description of indicators physically
present
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20.1 Component Names

Component names have the form “class(member)” where class describes a subset of the
available components for a particular type and the optional member identifies a specific
component from that subset. For example, the name “atlantis(acme)” for a symbols com-
ponent might specify the symbols used for the atlantis national keyboard layout by the
vendor “acme.” Each class has an optional default member — references that specify a
class but not a member refer to the default member of the class, if one exists. Xkb places
no constraints on the interpretation of the class and member names used in component
names.

The class and member names are both specified using characters from the Latin-1 charac-
ter set. Xkb implementations must accept all alphanumeric characters, minus (‘-’) and
underscore (‘_’) in class or member names, and must not accept parentheses, plus, vertical
bar, percent sign, asterisk, question mark, or white space. The use of other characters is
implementation-dependent.

20.2 Listing the Known Keyboard Components

You may ask the server for a list of components for one or more component types. The
request takes the form of a set of patterns, one pattern for each of the component types,
including a pattern for the complete keyboard description. To obtain this list, use XkbList-
Components.

XkbComponentListPtr XkbListComponents(dpy, device_spec, ptrns, max_inout)
Display * dpy; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr ptrns; /* namelist for components of interest */
int * max_inout; /* max # returned names, # left over */

XkbListComponents queries the server for a list of component names matching the pat-
terns specified in ptrns. It waits for a reply and returns the matching component names in
an XkbComponentListRec structure. When you are done using the structure, you should
free it using XkbFreeComponentList. device_spec indicates a particular device in which
the caller is interested. A server is allowed (but not required) to restrict its reply to por-
tions of the database that are relevant for that particular device.

ptrns is a pointer to an XkbComponentNamesRec, described below. Each of the fields in
ptrns contains a pattern naming the components of interest. Each of the patterns is com-
posed of characters from the ISO Latin1 encoding, but can contain only parentheses, the
wildcard characters ‘?’ and ‘*’, and characters permitted in a component class or member
name (see section 20.1). A pattern may be NULL, in which case no components for that
type is returned. Pattern matches with component names are case sensitive. The ‘?’ wild-
card matches any single character, except a left or right parenthesis; the ‘*’ wildcard
matches any number of characters, except a left or right parenthesis. If an implementation
allows additional characters in a component class or member name other than those
required by the Xkb extension (see section 20.1), the result of comparing one of the addi-
tional characters to either of the wildcard characters is implementation-dependent.

If a pattern contains illegal characters, the illegal characters are ignored. The matching
process is carried out as if the illegal characters were omitted from the pattern.

max_inout is used to throttle the amount of data passed to and from the server. On input, it
specifies the maximum number of names to be returned (the total number of names in all
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component categories). Upon return from XkbListComponents, max_inout contains the
number of names that matched the request but were not returned because of the limit.

The component name patterns used to describe the request are passed to XkbListCompo-
nents using an XkbComponentNamesRec structure. This structure has no special alloca-
tion constraints or interrelationships with other structures; allocate and free this structure
using standard malloc and free calls or their equivalent:

typedef struct _XkbComponentNames {
char * keymap; /* keymap names */
char * keycodes; /* keycode names */
char * types; /* type names */
char * compat; /* compatibility map names */
char * symbols; /* symbol names */
char * geometry; /* geometry names */

} XkbComponentNamesRec, *XkbComponentNamesPtr;

XkbListComponents returns a pointer to an XkbComponentListRec:

typedef struct _XkbComponentList {
int num_keymaps; /* number of entries in keymap */
int num_keycodes; /* number of entries in keycodes */
int num_types; /* number of entries in types */
int num_compat; /* number of entries in compat */
int num_symbols; /* number of entries in symbols */
int num_geometry; /* number of entries in geometry;
XkbComponentNamePtr keymap; /* keymap names */
XkbComponentNamePtr keycodes; /* keycode names */
XkbComponentNamePtr types; /* type names */
XkbComponentNamePtr compat; /* compatibility map names */
XkbComponentNamePtr symbols; /* symbol names */
XkbComponentNamePtr geometry; /* geometry names */

} XkbComponentListRec, *XkbComponentListPtr;

typedef struct _XkbComponentName {
unsigned short flags; /* hints regarding component name */
char * name; /* name of component */

} XkbComponentNameRec, *XkbComponentNamePtr;

Note that the structure used to specify patterns on input is an XkbComponentNamesRec,
and that used to hold the individual component names upon return is an XkbComponent-
NameRec (no trailing ‘s’ in Name).

When you are done using the structure returned by XkbListComponents, free it using
XkbFreeComponentList.

void XkbFreeComponentList(list)
XkbComponentListPtr  list; /* pointer to XkbComponentListRec to free */

20.3 Component Hints

A set of flags is associated with each component; these flags provide additional hints
about the component’s use. These hints are designated by bit masks in the flags field of
the XkbComponentNameRec structures contained in the XkbComponentListRec
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returned from XkbListComponents. The least significant byte of the flags field has the
same meaning for all types of keyboard components; the interpretation of the most signif-
icant byte is dependent on the type of component. The flags bits are defined in Table 20.2.
The symbols hints in Table 20.2 apply only to partial symbols components (those with
XkbLC_Partial also set); full symbols components are assumed to specify all of the
pieces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe the
primary intent of the component designer and should not be simply an exhaustive list of
the kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily alphanumeric keys, but many affect a few modifier keys as well; such mappings
should set only the XkbLC_AlphanumericKeys hint. In general, symbols components
should set only one of the four flags (XkbLC_AlternateGroup may be combined with
any of the other flags).

20.4 Building a Keyboard Description Using the Server Database

A client may request that the server fetch one or more components from its database and
use those components to build a new server keyboard description. The new keyboard
description may be built from scratch, or it may be built starting with the current keyboard
description for a particular device. Once the keyboard description is built, all or part of it
may be returned to the client. The parts returned to the client need not include all of the
parts used to build the description. At the time it requests the server to build a new key-
board description, a client may also request that the server use the new description inter-
nally to replace the current keyboard description for a specific device, in which case the
behavior of the device changes accordingly.

Table 20.2  XkbComponentNameRec Flags Bits

Component
Type

Component Hints
(flags) Meaning Value

All Components XkbLC_Hidden Do not present to user (1L<<0)
XkbLC_Default Default member of class (1L<<1)
XkbLC_Partial Partial component (1L<<2)

Keymap none
Keycodes none
Types none
Compatibility none
Symbols XkbLC_AlphanumericKeys Bindings primarily for alphanumeric

keyboard section
(1L<<8)

XkbLC_ModifierKeys Bindings primarily for modifier keys (1L<<9)
XkbLC_KeypadKeys Bindings primarily for numeric keypad

keys
(1L<<10)

XkbLC_FunctionKeys Bindings primarily for function keys (1L<<11)
XkbLC_AlternateGroup Bindings for an alternate group (1L<<12)

Geometry none
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To build a new keyboard description from a set of named components, and to optionally
have the server use the resulting description to replace an active one, use XkbGetKey-
boardByName.

XkbDescPtr XkbGetKeyboardByName(dpy, device_spec, names, want, need, load)
Display * dpy; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr names; /* names of components to fetch */
unsigned int want; /* desired structures in returned record */
unsigned int need; /* mandatory structures in returned record */
Bool load; /* True => load into device_spec */

names contains a set of expressions describing the keyboard components the server should
use to build the new keyboard description. want and need are bit fields describing the parts
of the resulting keyboard description that should be present in the returned XkbDescRec.

The individual fields in names are component expressions composed of keyboard compo-
nent names (no wildcarding as may be used in XkbListComponents), the special compo-
nent name symbol ‘%’, and the special operator characters ‘+’ and ‘|’. A component
expression is parsed left to right, as follows:

• The special component name “computed” may be used in keycodes component
expressions and refers to a component consisting of a set of keycodes computed auto-
matically by the server as needed.

• The special component name “canonical” may be used in types component
expressions and refers to a partial component defining the four standard key types:
ALPHABETIC, ONE_LEVEL, TWO_LEVEL, and KEYPAD.

• The special component name ‘%’ refers to the keyboard description for the device spec-
ified in device_spec or the keymap names component. If a keymap names component
is specified that does not begin with ‘+’ or ‘|’ and does not contain ‘%’, then ‘%’ refers
to the description generated by the keymap names component. Otherwise, it refers to
the keyboard description for device_spec.

• The ‘+’ operator specifies that the following component should override the currently
assembled description; any definitions that are present in both components are taken
from the second.

• The ‘|’ operator specifies that the next specified component should augment the cur-
rently assembled description; any definitions that are present in both components are
taken from the first.

• If the component expression begins with an operator, a leading ‘%’ is implied.
• If any unknown or illegal characters appear anywhere in the expression, the entire

expression is invalid and is ignored.

For example, if names->symbols contained the expression “+de”, it specifies that the
default member of the “de” class of symbols should be applied to the current keyboard
mapping, overriding any existing definitions (it could also be written “+de(default)”).

Here is a slightly more involved example: the expression
“acme(ascii)+de(basic)|iso9995-3” constructs a German (de) mapping for the ASCII key-
board supplied by the “acme” vendor. The new definition begins with the symbols for the
ASCII keyboard for Acme (acme(ascii)), overrides them with definitions for the basic
German keyboard (de(basic)), and then applies the definitions from the default iso9995-3
keyboard (iso9995-3) to any undefined keys or groups of keys (part three of the iso9995
standard defines a common set of bindings for the secondary group, but allows national
layouts to override those definitions where necessary).
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Note The interpretation of the above expression components (acme, ascii, de, basic,
iso9995-3) is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keymap names component that does not contain ‘%’ (either
explicit or implied by virtue of an expression starting with an operator) indicates a
description that is independent of the keyboard description for the device specified in
device_spec. The same is true of requests in which the keymap names component is empty
and all five other names components contain expressions void of references to ‘%’.
Requests of this form allow you to deal with keyboard definitions independent of any
actual device.

The server parses all non-NULL fields in names and uses them to build a keyboard descrip-
tion. However, before parsing the expressions in names, the server ORs the bits in want
and need together and examines the result in relationship to the expressions in names.
Table 20.3 identifies the components that are required for each of the possible bits in want
or need. If a required component has not been specified in the names structure (the corre-
sponding field is NULL), the server substitutes the expression “%”, resulting in the compo-
nent values being taken from device_spec. In addition, if load is True, the server modifies
names if necessary (again using a “%” entry) to ensure all of the following fields are
non-NULL: types, keycodes, symbols, and compat.

need specifies a set of keyboard components that the server must be able to resolve in
order for XkbGetKeyboardByName to succeed; if any of the components specified in need
cannot be successfully resolved, XkbGetKeyboardByName fails.

want specifies a set of keyboard components that the server should attempt to resolve, but
that are not mandatory. If the server is unable to resolve any of these components, XkbGet-
KeyboardByName still succeeds. Bits specified in want that are also specified in need have
no effect in the context of want.

If load is True, the server updates its keyboard description for device_spec to match the
result of the keyboard description just built. If load is False, the server’s description for
device device_spec is not updated. In all cases, the parts specified by want and need from
the just-built keyboard description are returned.

The names structure in an XkbDescRec keyboard description record (see Chapter 18)
contains one field for each of the five component types used to build a keyboard descrip-

Table 20.3  Want and Need Mask Bits and Required Names Components

want or need mask bit Required names Components value
XkbGBN_TypesMask Types (1L<<0)
XkbGBN_CompatMapMask Compat (1L<<1)
XkbGBN_ClientSymbolsMask Types + Symbols + Keycodes (1L<<2)
XkbGBN_ServerSymbolsMask Types + Symbols + Keycodes (1L<<3)
XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN_IndicatorMapMask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<5)
XkbGBN_GeometryMask Geometry (1L<<6)
XkbGBN_OtherNamesMask Types + Symbols + Keycodes +

Compat + Geometry
(1L<<7)

XkbGBN_AllComponentsMask (0xff)
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tion. When a keyboard description is built from a set of database components, the corre-
sponding fields in this names structure are set to match the expressions used to build the
component.

The entire process of building a new keyboard description from the server database of
components and returning all or part of it is diagrammed in Figure 20.1:

Figure 20.1 Building a New Keyboard Description from the Server Database

The information returned to the client in the XkbDescRec is essentially the result of a
series of calls to extract information from a fictitious device whose description matches
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the one just built. The calls corresponding to each of the mask bits are summarized in
Table 20.4, together with the XkbDescRec components that are filled in.

There is no way to determine which components specified in want (but not in need) were
actually fetched, other than breaking the call into successive calls to XkbGetKeyboard-
ByName and specifying individual components.

XkbGetKeyboardByName always sets min_key_code and max_key_code in the returned
XkbDescRec structure.

XkbGetKeyboardByName is synchronous; it sends the request to the server to build a new
keyboard description and waits for the reply. If successful, the return value is non-NULL.
XkbGetKeyboardByName generates a BadMatch protocol error if errors are encountered
when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather than
generating a new keyboard description from elements in the server database, use XkbGet-
Keyboard (see section 6.2).

XkbDescPtr XkbGetKeyboard(dpy, which, device_spec)
Display * dpy; /* connection to X server */
unsigned int which; /* mask of components of XkbDescRec of interest */
unsigned int device_spec; /* device ID */

XkbGetKeyboard is used to read the current description for one or more components of a
keyboard device. It calls XkbGetKeyboardByName as follows:

XkbGetKeyboardByName(dpy, device_spec, NULL, which, which, False).

Table 20.4  XkbDescRec Components Returned for Values of Want & Needs

Request (want+need) Fills in Xkb components Equivalent Function Call
XkbGBN_TypesMask map.types XkbGetUpdatedMap(dpy, XkbTypesMask, Xkb)
XkbGBN_ServerSymbolsMask server XkbGetUpdatedMap(dpy, XkbAllClientInfoMask, Xkb)
XkbGBN_ClientSymbolsMask map, including map.types XkbGetUpdatedMap(dpy, XkbAllServerInfoMask, Xkb)
XkbGBN_IndicatorMaps indicators XkbGetIndicatorMap(dpy, XkbAllIndicators, Xkb)
XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask, Xkb)
XkbGBN_GeometryMask geom XkbGetGeometry(dpy, Xkb)
XkbGBN_KeyNamesMask names.keys

names.key_aliases
XkbGetNames(dpy, XkbKeyNamesMask |

XkbKeyAliasesMask, Xkb)
XkbGBN_OtherNamesMask names.keycodes

names.geometry
names.symbols
names.types
map.types[*].lvl_names[*]
names.compat
names.vmods
names.indicators
names.groups
names.radio_groups
names.phys_symbols

XkbGetNames(dpy, XkbAllNamesMask &
~(XkbKeyNamesMask | XkbKeyAliasesMask),
Xkb)



November 10, 1997 Library Version 1.0/Document Revision 1.1 198

The X Keyboard Extension 21   Attaching Xkb Actions to X Input Extension

21 Attaching Xkb Actions to X Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well as other
input devices, in addition to the core X keyboard and pointer. The input extension catego-
rizes devices by grouping them into classes. Keyboards and other input devices with keys
are classified as KeyClass devices by the input extension. Other types of devices sup-
ported by the input extension include, but are not limited to: mice, tablets, touchscreens,
barcode readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.
Xkb provides additional control over all X input extension devices, whether they are Key-
Class devices or not, as well as the core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server imple-
mentor determines whether interaction between Xkb and the input extension is allowed.
Implementors are free to restrict the effects of Xkb to only the core X keyboard device or
allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by Xkb.
Some or all may be allowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input extension,
the following access is provided:

• Xkb functionality for the core X keyboard device and its mapping is accessed via the
functions described in the other chapters of this specification.

• Xkb functionality for the core X pointer device is accessed via the XkbGetDeviceInfo
and XkbSetDeviceInfo functions described in this chapter.

If all types of interaction are allowed between Xkb and the input extension, the following
additional access is provided:

• If allowed, Xkb functionality for additional KeyClass devices supported by the input
extension is accessed via those same functions.

• If allowed, Xkb functionality for non-KeyClass devices supported by the input exten-
sion is also accessed via the XkbGetDeviceInfo and XkbSetDeviceInfo functions
described in this chapter.

Each device has an X Input Extension device ID. Each device may have several classes of
feedback. For example, there are two types of feedbacks that can generate bells: bell feed-
back and keyboard feedback (BellFeedbackClass and KbdFeedbackClass). A
device can have more than one feedback of each type; the feedback ID identifies the par-
ticular feedback within its class.

A keyboard feedback has:

• Auto-repeat status (global and per key)
• 32 LEDs
• A bell

An indicator feedback has:

• Up to 32 LEDs

If the input extension is present and the server allows interaction between the input exten-
sion and Xkb, then the core keyboard, the core keyboard indicators, and the core keyboard
bells may each be addressed using an appropriate device spec, class, and ID. The constant
XkbXIDfltID may be used as the device ID to specify the core keyboard indicators for
the core indicator feedback. The particular device ID corresponding to the core keyboard
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feedback and the core indicator feedback may be obtained by calling XkbGetDeviceInfo
and specifying XkbUseCoreKbd as the device_spec; the values will be returned in
dflt_kbd_id and dflt_led_id.

If the server does not allow Xkb access to input extension KeyClass devices, attempts to
use Xkb requests with those devices fail with a BadKeyboard error. Attempts to access
non-KeyClass input extension devices via XkbGetDeviceInfo and XkbSetDeviceInfo fail
silently if Xkb access to those devices is not supported by the X server.

21.1 XkbDeviceInfoRec

Information about X Input Extension devices is transferred between a client program and
the Xkb extension in an XkbDeviceInfoRec structure:

typedef struct {
char * name; /* name for device */
Atom type; /* name for class of devices */
unsigned short device_spec; /* device of interest */
Bool has_own_state;/* True=>this device has its own state */
unsigned short supported; /* bits indicating supported capabilities */
unsigned short unsupported; /* bits indicating unsupported capabilities */
unsigned short num_btns; /* number of entries in btn_acts */
XkbAction * btn_acts; /* button actions */
unsigned short sz_leds; /* total number of entries in LEDs vector */
unsigned short num_leds; /* number of valid entries in LEDs vector */
unsigned short dflt_kbd_fb; /* input extension ID of default (core kbd) indicator */
unsigned short dflt_led_fb; /* input extension ID of default indicator feedback */
XkbDeviceLedInfoPtr leds; /* LED descriptions */

} XkbDeviceInfoRec, *XkbDeviceInfoPtr;

typedef struct {
unsigned short led_class; /* class for this LED device*/
unsigned short led_id; /* ID for this LED device */
unsigned int phys_indicators; /* bits for which LEDs physically present */
unsigned int maps_present; /* bits for which LEDs have maps in maps */
unsigned int names_present; /* bits for which LEDs are in names */
unsigned int state; /* 1 bit => corresponding LED is on */
Atom names[XkbNumIndicators]; /* names for LEDs */
XkbIndicatorMapRec maps; /* indicator maps for each LED */

} XkbDeviceLedInfoRec, *XkbDeviceLedInfoPtr;

The type field is a registered symbolic name for a class of devices (for example, “TABLET”). If a
device is a keyboard (that is, is a member of KeyClass), it has its own state, and has_own_state
is True. If has_own_state is False, the state of the core keyboard is used. The supported and
unsupported fields are masks where each bit indicates a capability. The meaning of the
mask bits is listed in Table 21.1, together with the fields in the XkbDeviceInfoRec
structure that are associated with the capability represented by each bit. The same bits are
used to indicate the specific information desired in many of the functions described subse-
quently in this section.
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The name, type, has_own_state, supported, and unsupported fields are always filled in when a
valid reply is returned from the server involving an XkbDeviceInfoRec. All of the other
fields are modified only if the particular function asks for them.

21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of input
devices other than the core X keyboard, or to determine the status of indicator maps, indi-
cator names or button actions on a non-KeyClass extension device, use XkbGetDevice-
Info.

XkbDeviceInfoPtr XkbGetDeviceInfo(dpy, which, device_spec, ind_class, ind_id)
Display * dpy; /* connection to X server */
unsigned int which; /* mask indicating information to return */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
unsigned int ind_class; /* feedback class for indicator requests */
unsigned int ind_id; /* feedback ID for indicator requests */

XkbGetDeviceInfo returns information about the input device specified by device_spec.
Unlike the device_spec parameter of most Xkb functions, device_spec does not need to be

Table 21.1  XkbDeviceInfoRec Mask Bits

Name XkbDeviceInfoRec
Fields Effected Value Capability If Set

XkbXI_KeyboardsMask (1L << 0) Clients can use all Xkb requests and
events with KeyClass devices sup-
ported by the input device exten-
sion.

XkbXI_ButtonActionsMask num_btns
btn_acts

(1L <<1) Clients can assign key actions to
buttons on non-KeyClass input
extension devices.

XkbXI_IndicatorNamesMask leds->names (1L <<2) Clients can assign names to indica-
tors on non-KeyClass input exten-
sion devices.

XkbXI_IndicatorMapsMask leds->maps (1L <<3) Clients can assign indicator maps to
indicators on non-KeyClass input
extension devices.

XkbXI_IndicatorStateMask leds->state (1L <<4) Clients can request the status of
indicators on non-KeyClass input
extension devices.

XkbXI_IndicatorsMask sz_leds
num_leds
leds->*

(0x1c) XkbXI_IndicatorNamesMask |
XkbXI_IndicatorMapsMask |
XkbXI_IndicatorStateMask

XkbXI_UnsupportedFeaturesMask unsupported (1L <<15)
XkbXI_AllDeviceFeaturesMask Those selected by

Value column masks
(0x1e) XkbXI_IndicatorsMask |

XkbSI_ButtonActionsMask
XkbXI_AllFeaturesMask Those selected by

Value column masks
(0x1f) XkbSI_AllDeviceFeaturesMask |

XkbSI_KeyboardsMask
XkbXI_AllDetailsMask Those selected by

Value column masks
(0x801f) XkbXI_AllFeaturesMask |

XkbXI_UnsupportedFeaturesMask
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a keyboard device. It must, however, indicate either the core keyboard or a valid X Input
Extension device.

The which parameter is a mask specifying optional information to be returned. It is an
inclusive OR of one or more of the values from Table 21.1 and causes the returned
XkbDeviceInfoRec to contain values for the corresponding fields specified in the table.

The XkbDeviceInfoRec returned by XkbGetDeviceInfo always has values for name
(may be a null string, “”), type, supported, unsupported, has_own_state, dflt_kbd_fd, and
dflt_kbd_fb. Other fields are filled in as specified by which.

Upon return, the supported field will be set to the inclusive OR of zero or more bits from
Table 21.1; each bit set indicates an optional Xkb extension device feature supported by
the server implementation, and a client may modify the associated behavior.

If the XkbButtonActionsMask bit is set in which, the XkbDeviceInfoRec returned
will have the button actions (btn_acts field) filled in for all buttons.

If which includes one of the bits in XkbXI_IndicatorsMask, the feedback class of
the indicators must be specified in ind_class, and the feedback ID of the indicators must
be specified in ind_id. If the request does not include any of the bits in
XkbXI_IndicatorsMask, the ind_class and ind_id parameters are ignored. The class
and ID can be obtained via the input device extension XListInputDevices request.

If any of the XkbXI_IndicatorsMask bits are set in which, the XkbDeviceInfoRec
returned will have filled in the portions of the leds structure corresponding to the indicator
feedback identified by ind_class and ind_id. The leds vector of the XkbDeviceInfoRec
is allocated if necessary and sz_leds and num_leds filled in. The led_class, led_id and
phys_indicators fields of the leds entry corresponding to ind_class and ind_id are always
filled in. If which contains XkbXI_IndicatorNamesMask, the names_present and
names fields of the leds structure corresponding to ind_class and ind_id are returned. If
which contains XkbXI_IndicatorStateMask, the corresponding state field is updated.
If which contains XkbXI_IndicatorMapsMask, the maps_present and maps fields are
updated.

Xkb provides convenience functions to request subsets of the information available via
XkbGetDeviceInfo. These convenience functions mirror some of the mask bits. The func-
tions all take an XkbDeviceInfoPtr as an input argument and operate on the X Input
Extension device specified by the device_spec field of the structure. Only the parts of the
structure indicated in the function description are updated. The XkbDeviceInfoRec
structure used in the function call can be obtained by calling XkbGetDeviceInfo or can be
allocated by calling XkbAllocDeviceInfo (see section 21.3).

These convenience functions are described as follows.

To query the button actions associated with an X Input Extension device, use XkbGetDe-
viceButtonActions.

Status XkbGetDeviceButtonActions(dpy, device_info, all_buttons, first_button, num_buttons)
Display * dpy; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
Bool all_buttons; /* True => get information for all buttons */
unsigned int first_button; /* number of first button for which info is desired */
unsigned int num_buttons; /* number of buttons for which info is desired */
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XkbGetDeviceButtonActions queries the server for the desired button information for the
device indicated by the device_spec field of device_info and waits for a reply. If success-
ful, XkbGetDeviceButtonActions backfills the button actions (btn_acts field of
device_info) for only the requested buttons, updates the name, type, supported, and unsup-
ported fields, and returns Success.

all_buttons, first_button and num_buttons specify the device buttons for which actions
should be returned. Setting all_buttons to True requests actions for all device buttons; if
all_buttons is False, first_button and num_buttons specify a range of buttons for which
actions are requested.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceButtonActions returns BadAccess. If allocation
errors occur, a BadAlloc status is returned. If the specified device
(device_info->device_spec) is invalid, a BadKeyboard status is returned. If the device
has no buttons, a BadMatch status is returned. If first_button and num_buttons specify
illegal buttons, a BadValue status is returned.

To query the indicator names, maps, and state associated with an LED feedback of an
input extension device, use XkbGetDeviceLedInfo.

Status XkbGetDeviceLedInfo(dpy, device_info, led_class, led_id, which)
Display * dpy; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
unsigned int led_class; /* LED feedback class assigned by input extension */
unsigned int led_id; /* LED feedback ID assigned by input extension */
unsigned int which; /* mask indicating desired information */

XkbGetDeviceLedInfo queries the server for the desired LED information for the feedback
specified by led_class and led_id for the X input extension device indicated by
device_spec->device_info and waits for a reply. If successful, XkbGetDeviceLedInfo back-
fills the relevant fields of device_info as determined by which with the results and returns
Success. Valid values for which are the inclusive OR of any of
XkbXI_IndicatorNamesMask, XkbXI_IndicatorMapsMask, and
XkbXI_IndicatorStateMask.

The fields of device_info that are filled in when this request succeeds are name, type, sup-
ported, and unsupported, and portions of the leds structure corresponding to led_class and
led_id as indicated by the bits set in which. The device_info->leds vector is allocated if
necessary and sz_leds and num_leds filled in. The led_class, led_id and phys_indicators
fields of the device_info->leds entry corresponding to led_class and led_id are always
filled in.

If which contains XkbXI_IndicatorNamesMask, the names_present and names fields
of the device_info->leds structure corresponding to led_class and led_id are updated, if
which contains XkbXI_IndicatorStateMask, the corresponding state field is updated,
and if which contains XkbXI_IndicatorMapsMask, the maps_present and maps fields
are updated.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceLedInfo returns BadAccess. If allocation errors
occur, a BadAlloc status is returned. If the device has no indicators, a BadMatch error is
returned. If ledClass or ledID have illegal values, a BadValue error is returned. If they
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have legal values but do not specify a feedback that contains LEDs and is associated with
the specified device, a BadMatch error is returned.

21.3 Allocating, Initializing, and Freeing the XkbDeviceInfoRec Structure

To obtain an XkbDeviceInfoRec structure, use XkbGetDeviceInfo or XkbAllocDevice-
Info.

XkbDeviceInfoPtr XkbAllocDeviceInfo(device_spec, n_buttons, sz_leds)
unsigned int device_spec; /* device ID with which structure will be used */
unsigned int n_buttons; /* number of button actions to allocate space for*/
unsigned int sz_leds; /* number of LED feedbacks to allocate space for */

XkbAllocDeviceInfo allocates space for an XkbDeviceInfoRec structure and initializes
that structure’s device_spec field with the device ID specified by device_spec. If
n_buttons is nonzero, n_buttons XkbActions are linked into the XkbDeviceInfoRec
structure and initialized to zero. If sz_leds is nonzero, sz_leds XkbDeviceLedInfoRec
structures are also allocated and linked into the XkbDeviceInfoRec structure. If you
request XkbDeviceLedInfoRec structures be allocated using this request, you must ini-
tialize them explicitly.

To obtain an XkbDeviceLedInfoRec structure, use XkbAllocDeviceLedInfo.

Status XkbAllocDeviceLedInfo(devi, num_needed)
XkbDeviceInfoPtr device_info; /* structure in which to allocate LED space */
int num_needed; /* number of indicators to allocate space for */

XkbAllocDeviceLedInfo allocates space for an XkbDeviceLedInfoRec and places it in
device_info. If num_needed is nonzero, num_needed XkbIndicatorMapRec structures
are also allocated and linked into the XkbDeviceLedInfoRec structure. If you request
XkbIndicatorMapRec structures be allocated using this request, you must initialize
them explicitly. All other fields are initialized to zero.

To initialize an XkbDeviceLedInfoRec structure, use XkbAddDeviceLedInfo.

XkbDeviceLedInfoPtr XkbAddDeviceLedInfo(device_info, led_class, led_id)
XkbDeviceInfoPtr device_info; /* structure in which to add LED info */
unsigned int led_class; /* input extension class for LED device of interest */
unsigned int led_id; /* input extension ID for LED device of interest */

XkbAddDeviceLedInfo first checks to see whether an entry matching led_class and led_id
already exists in the device_info->leds array. If it finds a matching entry, it returns a
pointer to that entry. Otherwise, it checks to be sure there is at least one empty entry in
device_info->leds and extends it if there is not enough room. It then increments
device_info->num_leds and fills in the next available entry in device_info->leds with
led_class and led_id.

If successful, XkbAddDeviceLedInfo returns a pointer to the XkbDeviceLedInfoRec
structure that was initialized. If unable to allocate sufficient storage, or if device_info
points to an invalid XkbDeviceInfoRec structure, or if led_class or led_id are inappro-
priate, XkbAddDeviceLedInfo returns NULL.
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To allocate additional space for button actions in an XkbDeviceInfoRec structure, use
XkbResizeDeviceButtonActions.

Status XkbResizeDeviceButtonActions(device_info, new_total)
XkbDeviceInfoPtr device_info; /* structure in which to allocate button actions */
unsigned int new_total; /* new total number of button actions needed */

XkbResizeDeviceButton reallocates space, if necessary, to make sure there is room for a
total of new_total button actions in the device_info structure. Any new entries allocated
are zeroed. If successful, XkbResizeDeviceButton returns Success. If new_total is zero,
all button actions are deleted, device_info->num_btns is set to zero, and
device_info->btn_acts is set to NULL. If device_info is invalid or new_total is greater than
255, BadValue is returned. If a memory allocation failure occurs, a BadAlloc is
returned.

To free an XkbDeviceInfoRec structure, use XkbFreeDeviceInfo.

void XkbFreeDeviceInfo(device_info, which, free_all)
XkbDeviceInfoPtr device_info; /* pointer to XkbDeviceInfoRec in which to free items */
unsigned int which; /* mask of components of device_info to free */
Bool free_all; /* True => free everything, including device_info */

If free_all is True, the XkbFreeDeviceInfo frees all components of device_info and the
XkbDeviceInfoRec structure pointed to by device_info itself. If free_all is False, the
value of which determines which subcomponents are freed. which is an inclusive OR of
one or more of the values from Table 21.1. If which contains
XkbXI_ButtonActionsMask, all button actions associated with device_info are
freed, device_info->btn_acts is set to NULL, and device_info->num_btns is set to zero. If
which contains all bits in XkbXI_IndicatorsMask, all XkbDeviceLedInfoRec
structures associated with device_info are freed, device_info->leds is set to NULL, and
device_info->sz_leds and device_info->num_leds are set to zero. If which contains
XkbXI_IndicatorMapsMask, all indicator maps associated with device_info are
cleared, but the number of LEDs and the leds structures themselves are preserved. If
which contains XkbXI_IndicatorNamesMask, all indicator names associated with
device_info are cleared, but the number of LEDs and the leds structures themselves are
preserved. If which contains XkbXI_IndicatorStateMask, the indicator state asso-
ciated with the device_info leds are set to zeros but the number of LEDs and the leds struc-
tures themselves are preserved.

21.4 Setting Xkb Features for Non-KeyClass Input Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or input
extension device buttons. This makes it possible to control the keyboard or generate key-
board key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons cause
key events to be generated as if they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implementations
that do not support button actions for extension devices must not set the
XkbXI_ButtonActionsMask bit in the supported field of an XkbDeviceInfoRec
structure.
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If a client attempts to modify valid characteristics of a device using an implementation
that does not support modification of those characteristics, no protocol error is generated.
Instead, the server reports a failure for the request; it also sends an XkbExtensionDevi-
ceNotify event to the client that issued the request if the client has selected to receive
these events.

To change characteristics of an X Input Extension device in the server, first modify a local
copy of the device structure and then use either XkbSetDeviceInfo, or, to save network
traffic, use an XkbDeviceChangesRec structure (see section 21.6) and call
XkbChangeDeviceInfo to download the changes to the server.

To modify some or all of the characteristics of an X Input Extension device, use XkbSet-
DeviceInfo.

Bool XkbSetDeviceInfo(dpy, which, device_info)
Display * dpy; /* connection to X server */
unsigned int which; /* mask indicating characteristics to modify */
XkbDeviceInfoPtr device_info; /* structure defining the device and modifications */

XkbSetDeviceInfo sends a request to the server to modify the characteristics of the device
specified in the device_info structure. The particular characteristics modified are identified
by the bits set in which and take their values from the relevant fields in device_info (see
Table 21.1). XkbSetDeviceInfo returns True if the request was successfully sent to the
server. If the X server implementation does not allow interaction between the X input
extension and the Xkb Extension, the function does nothing and returns False.

The which parameter specifies which aspects of the device should be changed and is a bit-
mask composed of an inclusive OR or one or more of the following bits:
XkbXI_ButtonActionsMask, XkbXI_IndicatorNamesMask,
XkbXI_IndicatorMapsMask. If the features requested to be manipulated in which are
valid for the device, but the server does not support assignment of one or more of them,
that particular portion of the request is ignored.

If the device specified in device_info->device_spec does not contain buttons and a request
affecting buttons is made, or the device does not contain indicators and a request affecting
indicators is made, a BadMatch protocol error results.

If the XkbXI_ButtonActionsMask bit is set in the supported mask returned by XkbGet-
DeviceInfo, the Xkb extension allows applications to assign key actions to buttons on
input extension devices other than the core keyboard device. If the
XkbXI_ButtonActionsMask is set in which, the actions for all buttons specified in
device_info are set to the XkbActions specified in device_info->btn_acts. If the number
of buttons requested to be updated is not valid for the device, XkbSetDeviceInfo returns
False and a BadValue protocol error results.

If the XkbXI_IndicatorMaps and / or XkbXI_IndicatorNamesMask bit is set in the
supported mask returned by XkbGetDeviceInfo, the Xkb extension allows applications to
assign maps and / or names to the indicators of nonkeyboard extension devices. If sup-
ported, maps and / or names can be assigned to all extension device indicators, whether
they are part of a keyboard feedback or part of an indicator feedback.

If the XkbXI_IndicatorMapsMask and / or XkbXI_IndicatorNamesMask flag is set
in which, the indicator maps and / or names for all device_info->num_leds indicator
devices specified in device_info->leds are set to the maps and / or names specified in
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device_info->leds. device_info->leds->led_class and led_id specify the input extension
class and device ID for each indicator device to modify; if they have invalid values, a
BadValue protocol error results and XkbSetDeviceInfo returns False. If they have legal
values but do not specify a keyboard or indicator class feedback for the device in question,
a BadMatch error results. If any of the values in device_info->leds->names are not a valid
Atom or None, a BadAtom protocol error results.

Xkb provides convenience functions to modify subsets of the information accessible via
XkbSetDeviceInfo. Only the parts of the structure indicated in the function description are
modified. These convenience functions are described as follows.

To change only the button actions for an input extension device, use XkbSetDeviceBut-
tonActions.

Bool XkbSetDeviceButtonActions(dpy, device, first_button, num_buttons, actions)
Display * dpy; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure defining the device and modifications */
unsigned int first_button; /* number of first button to update, 0 relative */
unsigned int num_buttons; /* number of buttons to update */

XkbSetDeviceButtonActions assigns actions to the buttons of the device specified in
device_info->device_spec. Actions are assigned to num_buttons buttons beginning with
first_button and are taken from the actions specified in device_info->btn_acts.

If the server does not support assignment of Xkb actions to extension device buttons, Xkb-
SetDeviceButtonActions has no effect and returns False. If the device has no buttons or if
first_button or num_buttons specify buttons outside of the valid range as determined by
device_info->num_btns, the function has no effect and returns False. Otherwise, XkbSet-
DeviceButtonActions sends a request to the server to change the actions for the specified
buttons and returns True.

If the actual request sent to the server involved illegal button numbers, a BadValue proto-
col error is generated. If an invalid device identifier is specified in
device_info->device_spec, a BadKeyboard protocol error results. If the actual device
specified in device_info->device_spec does not contain buttons and a request affecting
buttons is made, a BadMatch protocol error is generated.

21.5 XkbExtensionDeviceNotify Event

The Xkb extension generates XkbExtensionDeviceNotify events when the status of
an input extension device changes or when an attempt is made to use an Xkb feature that is
not supported by a particular device.

Note Events indicating an attempt to use an unsupported feature are delivered only to the
client requesting the event.

To track changes to the status of input extension devices or attempts to use unsupported
features of a device, select to receive XkbExtensionDeviceNotify events by calling
either XkbSelectEvents or XkbSelectEventDetails (see section 4.3).

To receive XkbExtensionDeviceNotify events under all possible conditions, call
XkbSelectEvents and pass XkbExtensionDeviceNotifyMask in both bits_to_change
and values_for_bits.
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The XkbExtensionDeviceNotify event has no event details. However, you can call
XkbSelectEventDetails using XkbExtensionDeviceNotify as the event_type and spec-
ifying XkbAllExtensionDeviceMask in bits_to_change and values_for_bits. This has
the same effect as a call to XkbSelectEvents.

The structure for XkbExtensionDeviceNotify events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /* True => synthetically generated*/
Display * display; /* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* XkbExtensionDeviceNotifyEvent */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int reason; /* reason for the event */
unsigned int supported; /* mask of supported features */
unsigned int unsupported; /* unsupported features this client attempted to use */
int first_btn; /* first button that changed */
int num_btns; /* number of buttons that changed */
unsigned int leds_defined; /* indicators with names or maps */
unsigned int led_state; /* current state of the indicators */
int led_class; /* feedback class for LED changes */
int led_id; /* feedback ID for LED changes */

} XkbExtensionDeviceNotifyEvent;

The XkbExtensionDeviceNotify event has fields enabling it to report changes in the
state (on/off) of all of the buttons for a device, but only for one LED feedback associated
with a device. You will get multiple events when more than one LED feedback changes
state or configuration.

21.6 Tracking Changes to Extension Devices

Changes to an Xkb extension device may be tracked by listening to XkbDeviceExten-
sionNotify events and accumulating the changes in an XkbDeviceChangesRec struc-
ture. The changes noted in the structure may then be used in subsequent operations to
update either a server configuration or a local copy of an Xkb extension device configura-
tion. The changes structure is defined as follows:

typedef struct _XkbDeviceChanges {
unsigned int changed; /* bits indicating what has changed */
unsigned short first_btn; /* number of first button which changed, if any */
unsigned short num_btns; /* number of buttons that have changed */
XkbDeviceLedChangesRec leds;

} XkbDeviceChangesRec,*XkbDeviceChangesPtr;

typedef struct _XkbDeviceLedChanges {
unsigned short led_class; /* class of this indicator feedback bundle */
unsigned short led_id; /* ID of this indicator feedback bundle */
unsigned int names; /* bits indicating which names have changed */
unsigned int maps; /* bits indicating which maps have changed */
struct _XkbDeviceLedChanges *next; /* link to indicator change record for next set */

} XkbDeviceLedChangesRec,*XkbDeviceLedChangesPtr;
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A local description of the configuration and state of a device may be kept in an XkbDevi-
ceInfoRec structure. The actual state or configuration of the device may change because
of XkbSetDeviceInfo and XkbSetButtonActions requests made by clients or by user interac-
tion with the device. The X server sends an XkbExtensionDeviceNotify event to
all interested clients when the state of any buttons or indicators or the configuration of the
buttons or indicators on the core keyboard or any input extension device changes. The
event reports the state of indicators for a single indicator feedback, and the state of up to
128 buttons. If more than 128 buttons or more than one indicator feedback are changed,
the additional buttons and indicator feedbacks are reported in subsequent events. Xkb pro-
vides functions with which you can track changes to input extension devices by noting the
changes that were made and then requesting the changed information from the server.

To note device changes reported in an XkbExtensionDeviceNotify event, use
XkbNoteDeviceChanges.

void XkbNoteDeviceChanges (old, new, wanted)
XkbDeviceChangesPtr old; /* structure tracking state changes */
XkbExtensionDeviceNotifyEvent * new; /* event indicating state changes */
unsigned int wanted; /* mask indicating changes to note

*/

The wanted field specifies the changes that should be noted in old, and is composed of the
bitwise inclusive OR of one or more of the masks from Table 21.1. The reason field of the
event in new indicates the types of changes the event is reporting. XkbNoteDeviceChanges
updates the XkbDeviceChangesRec specified by old with the changes that are both
specified in wanted and contained in new->reason.

To update a local copy of the state and configuration of an X input extension device with
the changes previously noted in an XkbDeviceChangesRec structure, use XkbGetDevi-
ceInfoChanges.

To query the changes that have occurred in the button actions or indicator names and indi-
cator maps associated with an input extension device, use XkbGetDeviceInfoChanges.

Status XkbGetDeviceInfoChanges(dpy, device_info, changes)
Display * dpy; /* connection to X server */
XkbDeviceInfoPtr device_info; /* structure to update with results */
XkbDeviceChangesPtr changes; /* contains notes of changes that have occurred */

The changes->changed field indicates which attributes of the device specified in
changes->device have changed. The parameters describing the changes are contained in
the other fields of changes. XkbGetDeviceInfoChanges uses that information to call Xkb-
GetDeviceInfo to obtain the current status of those attributes that have changed. It then
updates the local description of the device in device_info with the new information.

To update the server’s description of a device with the changes noted in an XkbDevice-
ChangesRec, use XkbChangeDeviceInfo.

Bool XkbChangeDeviceInfo (dpy, device_info, changes)
Display * dpy; /* connection to X server */
XkbDeviceInfoPtr device_info; /* local copy of device state and configuration */
XkbDeviceChangesPtr changes; /* note specifying changes in device_info */
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XkbChangeDeviceInfo updates the server’s description of the device specified in
device_info->device_spec with the changes specified in changes and contained in
device_info. The update is made by an XkbSetDeviceInfo request.
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22 Debugging Aids

The debugging aids are intended for use primarily by Xkb implementors and are optional
in any implementation.

There are two bitmasks that may be used to control debugging. One bitmask controls the
output of debugging information, and the other controls behavior. Both bitmasks are ini-
tially all zeros.

To change the values of any of the debug controls, use XkbSetDebuggingFlags.

Bool XkbSetDebuggingFlags(display, mask, flags, msg, ctrls_mask, ctrls, ret_flags, ret_ctrls)
Display * display; /* connection to X server */
unsigned int mask; /* mask selecting debug output flags to change */
unsigned int flags; /* values for debug output flags selected by mask */
char * msg; /* message to print right now */
unsigned int ctrls_mask; /* mask selecting debug controls to change */
unsigned int ctrls; /* values for debug controls selected by ctrls_mask */
unsigned int * ret_flags; /* resulting state of all debug output flags */
unsigned int * ret_ctrls; /* resulting state of all debug controls */

XkbSetDebuggingFlags modifies the debug output flags as specified by mask and flags,
modifies the debug controls flags as specified by ctrls_mask and ctrls, prints the message
msg, and backfills ret_flags and ret_ctrls with the resulting debug output and debug con-
trols flags.

When bits are set in the debug output masks, mask and flags, Xkb prints debug informa-
tion corresponding to each bit at appropriate points during its processing. The device to
which the output is written is implementation-dependent, but is normally the same device
to which X server error messages are directed; thus the bits that can be set in mask and
flags is implementation-specific. To turn on a debug output selection, set the bit for the
output in the mask parameter and set the corresponding bit in the flags parameter. To turn
off event selection for an event, set the bit for the output in the mask parameter and do not
set the corresponding bit in the flags parameter.

When bits are set in the debug controls masks, ctrls_mask and ctrls, Xkb modifies its
behavior according to each controls bit. ctrls_mask and ctrls are related in the same way
that mask and flags are. The valid controls bits are defined in Table 22.1.

XkbSetDebuggingFlags returns True if successful and False otherwise. The only proto-
col error it may generate is BadAlloc, if for some reason it is unable to allocate storage.

XkbSetDebuggingFlags is intended for developer use and may be disabled in production X
servers. If it is disabled, XkbSetDebuggingFlags has no effect and does not generate any
protocol errors.

The message in msg is written immediately. The device to which it is written is implemen-
tation dependent but is normally the same device where X server error messages are
directed.

Table 22.1  Debug Control Masks

Debug Control Mask Value Meaning
XkbDF_DisableLocks (1 << 0) Disable actions that lock modifiers
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Glossary

Allocator
Xkb provides functions, known as allocators, to create and initialize Xkb data structures.

Audible Bell
An audible bell is the sound generated by whatever bell is associated with the keyboard or
input extension device, as opposed to any other audible sound generated elsewhere in the
system.

Autoreset Controls
The autoreset controls configure the boolean controls to automatically be enabled or
disabled at the time a program exits.

Base Group
The group in effect as a result of all actions other than a previous lock or latch request; the
base group is transient. For example, the user pressing and holding a group shift key that
shifts to Group2 would result in the base group being group 2 at that point in time.
Initially, base group is always Group1.

Base Modifiers
Modifiers that are turned on as a result of some actions other than previous lock or latch
requests; base modifiers are transient. For example, the user pressing and holding a key
bound to the Shift modifier would result in Shift being a base modifier at that point in
time.

Base Event Code
A number assigned by the X server at run time that is assigned to the extension to identify
events from that extension.

Base State
The base group and base modifiers represent keys that are physically or logically down;
these constitute the base state.

Boolean Controls
Global keyboard controls that may be selectively enabled and disabled under program
control and that may be automatically set to an on or off condition upon client program
exit.

Canonical Key Types
The canonical key types are predefined key types that describe the types of keys available
on most keyboards. The definitions for the canonical key types are held in the first
XkbNumRequiredTypes entries of the types field of the client map and are indexed using
the following constants:

XkbOneLevelIndex
XkbTwoLevelIndex
XkbAlphabeticIndex
XkbKeypadIndex

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.
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Compat Name
The compat name is a string that provides some information about the rules used to bind
actions to keys that are changed using core protocol requests.

Compatibility State
When an Xkb-extended X server connects to an Xkb-unaware client, the compatibility
state remaps the keyboard group into a core modifier whenever possible.

Compatibility Grab State
The grab state that results from applying the compatibility map to the Xkb grab state.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

Component Expression
An expression used to describe server keyboard database components to be loaded. It
describes the order in which the components should be loaded and the rules by which
duplicate attributes should be resolved.

Compose Processing
The process of mapping a series of keysyms to a string is known as compose processing.

Consumed Modifier
Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key types include an optional preserve field.

Core Event
An event created from the core X server.

Detectable Auto-Repeat
Detectable auto-repeat allows a client to detect an auto-repeating key. If a client requests
and the server supports detectable auto-repeat, Xkb generates KeyRelease events only
when the key is physically released. Thus the client receives a number of KeyPress
events for that key without intervening KeyRelease events until the key is finally
released, when a KeyRelease event is received.

Effective Group
The effective group is the arithmetic sum of the locked, latched, and base groups. The
effective keyboard group is always brought back into range depending on the value of the
GroupsWrap control for the keyboard. If an event occurs with an effective group that is
legal for the keyboard as a whole, but not for the key in question, the group for that event
only is normalized using the algorithm specified by the group_info member of the key
symbol map (XkbSymMapRec).

Effective Mask
An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers; a similar set of bitmasks corresponding to the 16 named virtual modifiers; and
an effective mask. The effective mask represents the set of all real modifiers that can
logically be set either by setting any of the real modifiers or by setting any of the virtual
modifiers in the definition.
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Effective Modifier
The effective modifiers are the bitwise union of the base, latched and locked modifiers.

Extension Device
Any keyboard or other input device recognized by the X input extension.

Global Keyboard Controls
Controls that affect the way Xkb generates key events. The controls affect all keys, as
opposed to per-key controls that are for a single key. Global controls include

• RepeatKeys Control
• DetectableAuto-repeat
• SlowKeys
• BounceKeys
• StickyKeys
• MouseKeys
• MouseKeysAccel
• AccessXKeys
• AccessXTimeout
• AccessXFeedback
• Overlay1
• Overlay2
• EnabledControls

Grab State
The grab state is the state used when matching events to passive grabs. It consists of the
grab group and the grab modifiers.

Group
See Keysym Group

Group Index
A number used as the internal representation for a group number. Group1 through Group
4 have indices of 0 through 3.

Groups Wrap Control
If a group index exceeds the maximum number of groups permitted for the specified
keyboard, it is wrapped or truncated back into range as specified by the global
GroupsWrap control. GroupsWrap can have the following values:

WrapIntoRange
ClampIntoRange
RedirectIntoRange

Key Type
An attribute of a key that identifies which modifiers affect the shift level of a key and the
number of groups on the key.

Key Width
The maximum number of shift levels in any group for the key type associated with a key.
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Keysym Group
A keysym group is a logical state of the keyboard providing access to a collection of
characters. A group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group. For example, Group1 could
be the English alphabet, and Group2 could be Greek. Xkb supports up to four different
groups for an input device or keyboard. Groups are in the range 1-4 (Group1 - Group4),
and are often referred to as G1 - G4 and indexed as 0 - 3.

Indicator
An indicator is a feedback mechanism such as an LED on an input device. Using Xkb, a
client application can determine the names of the various indicators, determine and control
the way that the individual indicators should be updated to reflect keyboard changes, and
determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard.

Indicator Feedback
An indicator feedback describes the state of a bank of up to 32 lights. It has a mask where
each bit corresponds to a light and an associated value mask that specifies which lights are
on or off.

Indicator Map
An indicator has its own set of attributes that specify whether clients can explicitly set its
state and whether it tracks the keyboard state. The indicator map is the collection of these
attributes for each indicator and is held in the maps array, which is an array of
XkbIndicatorRec structures.

Input Extension
An extension to the core X protocol that allows an X server to support multiple keyboards,
as well as other input devices, in addition to the core X keyboard and pointer. Other types
of devices supported by the input extension include, but are not limited to: mice, tablets,
touchscreens, barcode readers, button boxes, trackballs, identifier devices, data gloves,
and eye trackers.

Key Action
A key action consists of an operator and some optional data. Once the server has applied
the global controls and per-key behavior and has decided to process a key event, it applies
key actions to determine the effects of the key on the internal state of the server. Xkb
supports actions that do the following:

• Change base, latched, or locked modifiers or group
• Move the core pointer or simulate core pointer button events
• Change most aspects of keyboard behavior
• Terminate or suspend the server
• Send a message to interested clients
• Simulate events on other keys

Key Alias
A key alias is a symbolic name for a specific physical key. Key aliases allow the keyboard
layout designer to assign multiple key names to a single key. This allows the keyboard
layout designer to refer to keys using either their position or their “function.” Key aliases
can be specified both in the symbolic names component and in the keyboard geometry.
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Both sets of aliases are always valid, but key alias definitions in the keyboard geometry
have priority; if both symbolic names and geometry include aliases, you should consider
the definitions from the geometry before considering the definitions from the symbolic
names section.

Key Behavior
The behaviors field of the server map is an array of XkbBehavior, indexed by keycode,
and contains the behavior for each key. The X server uses key behavior to determine
whether to process or filter out any given key event; key behavior is independent of
keyboard modifier or group state. Each key has exactly one behavior.
Key behaviors include:

• XkbKB_Default
• XkbKB_Lock
• XkbKB_RadioGroup
• XkbKB_Overlay1
• XkbKB_Overlay2

Key Symbol Map
A key symbol map describes the symbols bound to a key and the rules to be used to
interpret those symbols. It is an array of XkbSymMapRec structures indexed by keycode.

Key Type
Key types are used to determine the shift level of a key given the current state of the
keyboard. There is one key type for each group for a key. Key types are defined using the
XkbKeyTypeRec and XkbKTMapEntryRec structures. Xkb allows up to
XkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in a key map.

Keyboard Bells
The sound the default bell makes when rung is the system bell or the default keyboard
bell. Some input devices may have more than one bell, identified by bell_class and
bell_id.

Keyboard Components
There are five types of components stored in the X server database of keyboard
components. They correspond to the symbols, geometry, keycodes, compat, and types
symbolic names associated with a keyboard.

Keyboard Feedback
A keyboard feedback includes the following:

Keyclick volume
Bell volume
Bell pitch
Bell duration
Global auto-repeat
Per key auto-repeat
32 LEDs

Key Width, Key Type Width
The maximum number of shift levels for a type is referred to as the width of a key type.
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Keyboard Geometry
Keyboard geometry describes the physical appearance of the keyboard, including the
shape, location, and color of all keyboard keys or other visible keyboard components such
as indicators and is stored in a XkbGeometryRec structure. The information contained in
a keyboard geometry is sufficient to allow a client program to draw an accurate
two-dimensional image of the keyboard.

Keyboard Geometry Name
The keyboard geometry name describes the physical location, size, and shape of the
various keys on the keyboard and is part of the XkbNamesRec structure.

Keyboard State
Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event.

Keycode
A numeric value returned to the X server when a key on a keyboard is pressed or released,
indicating which key is being modulated. Keycode numbers are in the range 1 <= keycode
<= max, where max is the number of physical keys on the device.

Keycode Name
The keycode name describes the range and meaning of the keycodes returned by the
keyboard and is part of the XkbNamesRec structure.

Latched Group
A latched group is a group index that is combined with the base and locked group to form
the effective group. It applies only to the next key event that does not change the keyboard
state. The latched group can be changed by keyboard activity or via Xkb extension library
functions.

Latched Modifier
Latched modifiers are the set of modifiers that are combined with the base modifiers and
the locked modifiers to form the effective modifiers. It applies only to the next key event
that does not change the keyboard state.

LED
A light emitting diode. However, for the purposes of the X keyboard extension
specification, a LED is any form of visual two-state indicator that is either on or off.

Locked Group
A locked group is a group index that is combined with the base and latched group to form
the effective group. When a group is locked, it supersedes any previous locked group and
remains the locked group for all future key events, until a new group is locked. The locked
group can be changed by keyboard activity or via Xkb extension library functions.

Locked Modifiers
Locked modifiers are the set of modifiers that are combined with the base modifiers and
the latched modifiers to form the effective modifiers. A locked modifier applies to all
future key events until it is explicitly unlocked.
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Lookup State
The lookup state is composed of the lookup group and the lookup modifiers, and it is the
state an Xkb-capable or Xkb-aware client should use to map a keycode to a keysym.

Modifier
A modifier is a logical condition that is either set or unset. The modifiers control the Shift
Level selected when a key event occurs. Xkb supports the core protocol eight modifiers
(Shift, Lock, Control, and Mod1 through Mod5), called the real modifiers. In addition,
Xkb extends modifier flexibility by providing a set of sixteen named virtual modifiers,
each of which can be bound to any set of the eight real modifiers.

Modifier Key
A modifier key is a key whose operation has no immediate effect, but that, for as long as it
is held down, modifies the effect of other keys. A modifier key may be, for example, a
shift key or a control key.

Modifier Definition
An Xkb modifier definition, held in an XkbModsRec, consists of a set of real modifiers, a
set of virtual modifiers, and an effective mask. The mask is the union of the real modifiers
and the set of real modifiers to which the virtual modifiers map; the mask cannot be
explicitly changed.

Nonkeyboard Extension Device
An input extension device that is not a keyboard. Other types of devices supported by the
input extension include, but are not limited to: mice, tablets, touchscreens, barcode
readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.

Outlines
An outline is a list of one or more points that describes a single closed polygon, used in the
geometry specification for a keyboard.

Physical Indicator Mask
The physical indicator mask is a field in the XkbIndicatorRec that indicates which
indicators are bound to physical LEDs on the keyboard; if a bit is set in phys_indicators,
then the associated indicator has a physical LED associated with it. This field is necessary
because some indicators may not have corresponding physical LEDs on the keyboard.

Physical Symbol Keyboard Name
The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols. The phys_symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Preserved Modifier
Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key types include an optional preserve field. If a modifier is present
in the preserve list, it is a preserved modifier.
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Radio Group
A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Real Modifier
Xkb supports the eight core protocol modifiers (Shift, Lock, Control, and Mod1
through Mod5); these are called the real modifiers, as opposed to the set of sixteen named
virtual modifiers that can be bound to any set of the eight real modifiers.

Server Internal Modifiers
Modifiers that the server uses to determine the appropriate symbol for an event; internal
modifiers are normally consumed by the server.

Shift Level
One of several states (normally 2 or 3) governing which graphic character is produced when a key
is actuated.

Symbol Keyboard Name
The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols. The phys_symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Symbolic Name
Xkb supports symbolic names for most components of the keyboard extension. Most of
these symbolic names are grouped into the names component of the keyboard description.

State Field
The portion of a client-side core protocol event that holds the modifier, group, and button
state information pertaining to the event.

Types Name
The types name provides some information about the set of key types that can be
associated with the keyboard. In addition, each key type can have a name, and each shift
level of a type can have a name.

Valuator
A valuator reports a range of values for some entity, like a mouse axis, a slider, or a dial.

Virtual Modifier
Xkb provides a set of sixteen named virtual modifiers that can be bound to any set of the
eight real modifiers. Each virtual modifier can be bound to any set of the real modifiers
(Shift, Lock, Control, and Mod1-Mod5).

Virtual Modifier Mapping
Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with each key.
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Xkb-aware Client
A client application that initializes Xkb extension and is consequently bound to an Xlib
that includes the Xkb extension.

Xkb-capable Client
A client application that makes no Xkb extension Xlib calls but is bound to an Xlib that
includes the Xkb extension.

Xkb-unaware Client
A client application that makes no Xkb extension Xlib calls and is bound to an Xlib that
does not include the Xkb extension.
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A
AccessX enable/disable bits, table 75
AccessXFeedback 53, 63, 72
AccessXKeys 53, 72
AccessXNotify 64, 66
AccessXTimeout 53, 62, 72
Action modifiers 144
Actions 141

changing number of actions bound to key 160
controls action types, table 154
detecting key action messages 155
device button action types 158
for changing active screen 153
for changing button number simulated by mouse keys 149
for changing current group state 145
for changing state of boolean controls 154
for changing the state of modifiers 143
for generating a different keycode for key 156
for generating DeviceButtonPress and DeviceButtonRelease

158
for generating messages 155
for locking modifiers and group 150
for moving the pointer 147
for simulating events from device valuators 159
for simulating pointer button press and release 148
group action flags, table 146
group action types, table 146
ISO action flags, table 151
message action flags, table 155
modifier action flags, table 145
modifier action types, table 144
obtaining actions for keys from server 160
pointer action types, table 147
ponter button action flags, table 149
ponter button action types, table 149
switch screen action flags, table 153

Allocator, glossary entry 211
AlwaysConsumeShiftAndLock 83
Audible Bell, glossary entry 211
AudibleBell 48, 53, 56, 72
AutoReset 53, 55, 72, 81
Autoreset Controls, glossary entry 211
AX_BounceKeyReject 48
AX_FeatureChange 48
AX_FeatureOff 48
AX_FeatureOn 48
AX_IndicatorChange 48
AX_IndicatorOff 48
AX_IndicatorOn 48
ax_options 75
ax_options values 63
AX_SlowKeyAccept 48
AX_SlowKeyPress 48
AX_SlowKeyReject 48
AX_SlowKeyRelease 48
AX_SlowKeysWarning 48
AX_StickyLatch 48
AX_StickyLock 48
AX_StickyUnlock 48

B
BadAccess 9
BadAlloc 9
BadAtom 9
BadClass 9

BadDevice 9
BadId 9
BadImplementation 9
BadKeyboard 4, 9
BadMatch 9
BadValue 9
Base error code 7
Base event code 7, 14
Base Event Code, glossary entry 211
Base group 20, 211
Base Group, glossary entry 211
Base modifiers 20, 211
Base Modifiers, glossary entry 211
Base State, glossary entry 211
BeepOnComposeFail 84
Behavior

key behaviors, table 161
keys 161
obtaining key behaviors from the server 162

BellFeedbackClass 48
Bells 47

audible 48
BeepOnComposeFail 84
bell_class and bell_id 48
detecting 51
fixed pitch bell only 64
forcing a server-generated bell 51
generating bell events 49
generating named bell events 50
high and low pitched beeps, rising and falling tones 63
names 47
predefined 48
sounding 49

Boolean controls 53
actions for changing the state of 154

Boolean Controls, glossary entry 211
BounceKeys 53, 66, 72

debounce_delay 75
delay 66

Bounds
computing bounding box of a row 106
computing bounding box of a section 106
computing bounding box of a shape 105
keyboard geometry 93
sections 95
shapes 94

Buttons, pointer 20

C
Canonical key types 129

initializing 131
used in compatiblity map 176

Canonical Key Types, glossary entry 211
Changes data structures 12
ClampIntoRange 69, 74, 134
Client map 2, 116, 126

allocating and freeing 123
key symbol map 133

Client Map, glossary entry 211
Client types

Xkb-aware 3, 21, 167
Xkb-capable 3, 21, 167
Xkb-unaware 3, 21, 167

Colors
keyboard, key label 93
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listed in geometry description 93
Compat Name, glossary entry 212
Compatibility 3

allocating and freeing maps 179
changing the server’s map 177
core keyboard mapping to Xkb keyboard mapping transfor-

mation 170
data structure 169
data structures, diagram 169
determining library 6
diagram 168
getting map components from server 174
group maps 169
map 167
setting explicit component controls 170, 171, 176
states 22
symbol interpretation match criteria, table 172
symbol interpretations 172
tracking changes to the map 178
types of transformations 168
using the compatibility map 175
with the core protocol 4
Xkb keyboard mapping to core keyboard mapping transfor-

mations 173
Xkb state to core protocol state transformation 169

Compatibility Grab State, glossary entry 212
Compatibility Map, glossary entry 212
Compatibility State, glossary entry 212
Component Expression, glossary entry 212
Components, explicit 163
Compose processing controls 83
Compose Processing, glossary entry 212
ComposeLED 84
Composing

BeepOnComposeFail 84
ComposeLED 84
ConsumeKeysOnComposeFail 83

Consumed Modifier, glossary entry 212
ConsumeKeysOnComposeFail 83
ConsumeLookupMods 82
Controls 2

AccessXFeedback 63
AccessXTimeout 62
actions for changing the state of 154
affecting compose processing 83
affecting keycode to string translation 82
allocating and freeing data structure 80
AlwaysConsumeShiftAndLock 83
AudibleBell 56
AutoReset 55, 81
BeepOnComposeFail 84
bell behavior 56
boolean 53, 82
BounceKeys 66
changing 77
changing the state of library controls 85
cleaning up on exit 55, 81
ComposeLED 84
ConsumeKeysOnComposeFail 83
ConsumeLookupMods 82
controls action types, table 154
data structure 71
DetectableAutorepeat 57
determining the state of libarary controls 85
determining which library controls are implemented 85

effecting event delivery 84
EnabledControls 54
enabling and diabling other controls 54
for general keyboard mapping 68
ForceLatin1Lookup 82
GroupsWrap 69
IgnoreGroupLock 70
IgnoreLockMods 69
IgnoreNewKeyboards 84
InternalMods 70
keyboard 53
keyboard use for physically-impaired persons 61
library controls masks 85
MouseKeys 59
MouseKeysAccel 59
overlays 58
PerKeyRepeat 56
querying 77
repeat key behavior 56
RepeatKeys 56
SlowKeys 65
StickyKeys 67
table listing all 72
tracking changes to keyboard controls 79
using the mouse from the keyboard 59
X library 82

Core Event, glossary entry 212

D
Data structures 11

editing 11
enlarging 11
freeing 13

debounce_delay 75
Debugging 210
Detectable Auto-repeat, glossary entry 212
DetectableAutorepeat 53, 57, 72
Device feedback, types 198
Device identifier 10
Device specifications, matching with display specifications 9
Devices

actions for generating DeviceButtonPress and DeviceBut-
tonRelease 158

actions simulating events from device valuators 159
allocating, initializing and freeing data structures 203
attaching Xkb actions to 198
querying features for non-KeyClass devices 200
querying for button actions 201
querying indicator information 202
setting features for non-KeyClass devices 204
tracking changes to 207

Display, actions for changing active screen 153
Doodads 93, 96

in sections 95
indicator 96
logo 96
outline 96
priority 96
solid 96
text 96
types 96

Drawing a keyboard representation 97
DumbBells 64
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E
Effective group 20
Effective Group, glossary entry 212
Effective mask 31
Effective Mask, glossary entry 212
Effective modifier mask 31
Effective Modifier, glossary entry 213
Effective modifiers 20
enabled_ctrls 74
EnabledControls 53, 54, 72
Errors, protocol 9
Events

AccessXNotify 64
base event code 14
data structures 15
interpreting key events 87
MouseKeys 65
overview 14
RepeatKeys 65
selecting for 15
StickyKeys 65
types 14
types, table 14

Explicit component masks, table 163
Explicit components 163
ExplicitAutoRepeat 163
ExplicitBehavior 163
ExplicitInterpret 163
ExplicitKeyType1 163
ExplicitKeyType2 163
ExplicitKeyType3 163
ExplicitKeyType4 163
ExplicitVModMap 163
Extension Device, glossary entry 213

F
Feedback, types 198
Fonts, key label 93
ForceLatin1Lookup 82

G
Geometry 3, 92

adding elements to 106
allocating and freeing components 110
bounds, keyboard 93
bounds, sections 95
bounds, shapes 94
computing the bounding box of a row 106
computing the bounding box of a section 106
computing the bounding box of a shape 105
data structures 98
data structures, diagram 98
doodad types 96
doodads 93, 96
doodads in sections 95
drawing a keyboard representation 97
finding the overlay for a key 106
functions for using 105
getting from server 104
key aliases 93
key drawing order 95
key label color 93
key label font 93
keyboard color 93
keyboard with four sections, diagram 94

keys 95
list of colors 93
outlines 94
outlines, diagram 105
overlay keys 96
overlay rows 96
overlays 95
priority 92, 95
priority, doodads 96
properties 93, 106
rotated keyboard sections 92
rotated keyboard sections, diagram 92
rows 95
rows in a section, diagram 95
sections 93, 95
shapes 93, 94
top-level geometry description 92

Global Keyboard Controls, glossary entry 213
Grab group 21
Grab modifiers 21
Grab state 21
Grab State, glossary entry 213
Grabs

passive, ignoring group locks 70
Group Index, glossary entry 213
Group, glossary entry 213
Groups 20, 116, 117

bindings for alternate group hints 193
changing 23
changing current state via key actions 145
compatibility maps 169
group action flags, table 146
group action types, table 146
group index constants 137
handling illegal groups 69
locking via actions 150
normalizing groups into range 20, 134
per-key group information 134
symbolic group names 23
treatment of out-of-range groups 134

Groups Wrap Control, glossary entry 213
GroupsWrap 53, 68, 69, 72, 74

H
Header files 6

I
IgnoreGroupLock 54, 68, 70, 72
IgnoreLockMods 54, 68, 69, 72, 74
IgnoreNewKeyboards 84
Implicit support 87
Indicator feedback 198
Indicator Feedback, glossary entry 214
Indicator map 35
Indicator Map, glossary entry 214
Indicator, glossary entry 214
Indicators 3, 34

allocating and freeing maps 45
changing maps 42
changing maps and state 41
ComposeLED 84
data structures 34
effects of explicit changes on 41
geometry, colors when lit and dark 96
getting information about from server 39
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getting information by index 40
getting information by name 40
getting the state of 40
how controls affect 39
how groups affect 36
how modifiers affect 37
indicator drives keyboard 35
keyboard drives indicator 35
maps 35
names 34
querying names, maps and state 202
tracking changes to state or map 44

Initializing Xkb 7
Input extension

attaching Xkb actions to devices 198
Input Extension, glossary entry 214
InternalMods 54, 68, 70, 72
ISO9995 standard 116

K
KbdFeedbackClass 48
Key Action, glossary entry 214
Key actions 141

independence of modifier state 117
Key Alias, glossary entry 214
Key aliases

geometry 93
names array 181

Key Behavior, glossary entry 215
Key events

interpreting 87
Xkb filtering out-of-range keycodes 188

Key symbol map 133
Key Symbol Map, glossary entry 215
Key Type, glossary entry 213, 215
Key types

ALPHABETIC 130
and shift levels 117
canonical 129
canonical key types, initializing 131
canonical, used in compatibility map 176
changing the number of levels in 132
copying key type data structures 132
getting from the server 131
KEYPAD 130
names 128
offset in symbol map 135
ONE_LEVEL 129
per-key key types indices 133
TWO_LEVEL 129
width (number of shift levels) 135

Key types, example 128
Key Width, glossary entry 213
Key Width, Key Type Width, glossary entry 215
Keyboard

components, server database 190
feedback 198
geometry 92
geometry sections 93
IgnoreNewKeyboards 84
names 180
replacing on the fly 187
symbolic name 93
unresponsiveness because of SlowKeys 62

Keyboard Bells, glossary entry 215

Keyboard Components, glossary entry 215
Keyboard controls 53

for physically-impaired persons 61
tracking changes 79

Keyboard description 2, 27
allocating and freeing 28
building from server database 193
changing 12
getting from server 28
updating library description 90

Keyboard Feedback, glossary entry 215
Keyboard Geometry Name, glossary entry 216
Keyboard Geometry, glossary entry 216
Keyboard mapping 116

client map 116
server map 116
shift levels and groups, diagram 117

Keyboard state 19
base group 20, 211
base modifiers 20, 211
compatibility states 22
description 19
determining 23
effective group 20
effective modifiers 20
grab state 21
keysym groups 20
lookup state 21
modifiers 20
tracking 24

Keyboard State, glossary entry 216
KeyClass 10, 157, 198
Keycode Name, glossary entry 216
Keycode to string translation 82
Keycode, glossary entry 216
Keycodes

actions for generating a different keycode for key 156
finding keysym bound to 89
keys which report more than one keycode 58
translating keycode to symbol and modifiers 91
Xkb filtering out-of-range key events 188

Keymap
allocating and freeing 123, 124
changing map components 120
client map 126
functions 89
getting map components from the server 118
getting partial map components from the server, table 118
tracking changes to 122

Keys
actions 141
aliases 93, 181
behavior 118, 161
behaviors, table 161
bindings hints 193
changing number of actions bound to key 160
changing number of groups and types for 137
changing the number of symbols bound to 138
finding keysym bound to 89
finding symbol for key with a particular state 89
for generating a different keycode for key 156
geometry 95
geometry, drawing order 95
getting per-key modifier map from server 139
getting the symbol map from the server 136
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label font and color 93
obtaining key actions for keys from server 160
obtaining key behaviors from the server 162
offset in symbol map 135
overlay geometry 96
per-key group information 134
per-key modifier map 138
symbolic names 181
types 127
width (number of shift levels) 135

Keysym group 20, 116
Keysym Group, glossary entry 214
Keysyms

finding modifier set bound to keysym 89
finding symbol for key with a particular state 89
to string translation control 83
translating keycode to symbol and modifiers 91

L
Latched Group, glossary entry 216
Latched Modifier, glossary entry 216
LatchToLock 68
Latin1 character set lookup 82
LED, glossary entry 216
Levels 116, 117

and key types 117
changing the number in a key type 132
key types 127
names 128

Linking with the Xkb extension 6
Locked Group, glossary entry 216
Locked Modifiers, glossary entry 216
Lookup group 21
Lookup modifiers 21
Lookup state 21
Lookup State, glossary entry 217

M
Major opcode 7
map 3
MappingNotify 84, 87, 88, 175, 178, 188
Messages

actions for generating 155
detecting key action messages 155

Modifier Definition, glossary entry 217
Modifier Key, glossary entry 217
Modifier, glossary entry 217
Modifiers 20

action flags 145
action types, table 144
actions for changing the state of 143
bindings for modifier keys hints 193
changing the state via key actions 144
consume lookup modifiers control 82
effective mask 31
finding modifier set bound to keysym 89
forcing shift and lock to be consumed 83
getting per-key map from server 139
in actions to generate different keycode for key 157
inactive virtual modifiers 32
key action independent of 117
key types containing 127
locking via actions 150
masks 22
modifier definition 30

names and masks 30
per-key modifier map 138
preserve field 128
preventing from being consumed 128
real 30
specifying which should be consumed by server 70
translating keycode to symbol and modifiers 91
virtual 30
virtual modifier server mapping 164

MotionNotify 147
Mouse

using from the keyboard 59
MouseKeys 53, 59, 72

acceleration, diagram 61
changing button number simulated by mouse keys 149

MouseKeysAccel 53, 59, 73
absolute pointer motion 60
fields, table 59
relative pointer motion 60

N
Names 3

allocating and freeing symbolic names 186
changing symbolic names on server 183
getting keyboard description by component expression

names 194
getting symbolic names from server 183
shift level 128
symbolic 180
symbolic keyboard 93
symbolic names masks, table 182
tracking changes 185
types 128

NewKeyboardNotify 84
Non-keyboard Extension Device, glossary entry 217
Normalizing groups 20

O
Outlines 94

approximation 94
primary 94

Outlines, glossary entry 217
Overlays

controls 58
geometry keys 96
geometry rows 96
geometry, finding the overlay for a key 106
in geometry sections 95
Overlay1 and Overlay2 controls 53, 73

P
PerKeyRepeat 53, 56, 73, 76
Physical Indicator Mask, glossary entry 217
Physical Symbol Keyboard Name, glossary entry 217
Pointer

buttons 20
changing button number simulated by mouse keys 149
motion, absolute 60
motion, relative 60
moving via actions 147
pointer action types, table 147
pointer button action flags, table 149
pointer button action types, table 149
simulating pointer buttons via key actions 148

Preserved Modifier, glossary entry 217
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Preserving modifiers from being consumed 128
Priority

doodads 96
geometry 92
sections 95

Properties
geometry 106

Protocol errors 9
added by Xkb 4

R
Radio Group, glossary entry 218
Radio groups 3, 161

names 182
Real Modifier, glossary entry 218
Real modifiers 30
RedirectIntoRange 69, 74, 134
Remapping

avoiding automatic by server 163
repeat_delay 75
repeat_interval 75
Repeating keys

controls 56
detecting 57

RepeatKeys 53, 56, 73
Rows 95

geometry 95
overlay 96

S
Sections 93, 95

doodads in 95
overlays 95
priority 95

Server
avoiding automatic remapping by 163

Server database 190
changing map components 120
class(member) form 191
complete and partial entries 190
component hints 192
component names 191
getting key types 131
getting map components from 118
getting partial map components from, table 118
listing keyboard components 191
obtaining virtual modifier bindings from 165
virtual modifier definitions 164

Server interaction with clients, diagram 167
Server Internal Modifiers, glossary entry 218
Server map 2

allocating and freeing 124
keyboard mapping 116, 140

Shapes 93, 94
Shift Level, glossary entry 218
Shift levels 116, 117

and key types 117
changing the number of in a key type 132
key types 127
names 128

SlowKeys 53, 65, 73
acceptance delay 65, 75

Standard, ISO9995 116
State Field, glossary entry 218
StickyKeys 53, 67, 73

automatically turning off 68
locking a modifier 68

Symbol Keyboard Name, glossary entry 218
Symbolic Name, glossary entry 218
Symbolic names 180

T
Translating

series of keysyms to string 82
single keycode to string 82

TwoKeys 68

V
Valuator 159
Valuator action 159
Valuator, glossary entry 218
Version, determining 6
Virtual Modifier Mapping, glossary entry 218
Virtual Modifier, glossary entry 218
Virtual modifiers 30

conventions for names 32
data structure relationships, diagram 165
effective mask 31
example 32
inactive 32
key mapping 31
master modifier definitions 31
modifier definition 30
names and masks 30
obtaining bindings from server 165
server mapping 164

Visual bells, generating 47, 52

W
Want and need components, table 195, 197
WrapIntoRange 69, 74, 134

X
X library controls 82
X library functions affected by Xkb 88
X server version required 1
XChangeDeviceNotify 187
XEvent 18
Xkb

attaching actions to input extension devices 198
changes data structures 12
compatibility map 167
extension components 1
extension library functions 4
groups and shift levels 117
implicit support 87
keyboard extension support for keyboards 1
keyboard mapping 116
overall structure, diagram 2
overview 1
state, diagram 19
X library functions affected 88

Xkb client map, diagram 126
Xkb events

base event code 14
data structures 15
overview 14
selecting for 15
types 14
types, table 14
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Xkb extension
disabling 8
name 6

Xkb server map, diagram 140
XKB.h 6
Xkb_RGAllowNone 162
XkbAccessXNotify 15, 64
XkbAccessXNotifyEvent 18, 64
XkbAction data structure 143
XkbActionCtrls macro 155
XkbActionMessage 15, 155
XkbActionMessageEvent 18, 156
XkbAddDeviceLedInfo( ) 203
XkbAddGeomColor( ) 107
XkbAddGeomDoodad( ) 109
XkbAddGeomKey( ) 108
XkbAddGeomKeyAlias( ) 107
XkbAddGeomOutline( ) 107
XkbAddGeomOverlay( ) 109
XkbAddGeomOverlayKey( ) 109
XkbAddGeomOverlayRow( ) 109
XkbAddGeomProperty( ) 107
XkbAddGeomRow( ) 108
XkbAddGeomSection( ) 108
XkbAddGeomShape( ) 108
XkbAddSymInterpret( ) 177
XkbAllocClientMap( ) 123
XkbAllocCompatMap( ) 179
XkbAllocControls( ) 80
XkbAllocDeviceInfo( ) 203
XkbAllocDeviceLedInfo( ) 203
XkbAllocGeomColors( ) 111
XkbAllocGeomDoodads( ) 114
XkbAllocGeometry( ) 115
XkbAllocGeomKeyAliases( ) 111
XkbAllocGeomKeys( ) 110
XkbAllocGeomOutlines( ) 110
XkbAllocGeomOverlayKeys( ) 114
XkbAllocGeomOverlayRows( ) 114
XkbAllocGeomOverlays( ) 113
XkbAllocGeomPoints( ) 112
XkbAllocGeomProps( ) 110
XkbAllocGeomRows( ) 113
XkbAllocGeomSectionDoodads( ) 114
XkbAllocGeomSections( ) 112
XkbAllocGeomShapes( ) 112
XkbAllocIndicatorMaps( ) 45
XkbAllocKeyboard( ) 28
XkbAllocNames( ) 186
XkbAllocServerMap( ) 124
XkbAlphabeticIndex canonical key type 129
XkbAnyAction data structure 143
XkbAnyEvent 15, 18
XkbApplyCompatMapToKey( ) 176
Xkb-aware client 3, 21
Xkb-aware Client, glossary entry 219
XkbAX_AnyFeedback macro 76
XkbAX_DumbBellFBMask 64
XkbAX_NeedFeedback macro 76
XkbAX_NeedOption macro 76
XkbAXN_AXKWarning 65
XkbAXN_BKAccept 65
XkbAXN_BKReject 65
XkbAXN_SKAccept 64
XkbAXN_SKPress 64

XkbAXN_SKReject 64
XkbAXN_SKRelease 64
XkbBehavior data structure 161
XkbBell( ) 49
XkbBellEvent( ) 50
XkbBellNotify 14, 47, 64
XkbBellNotifyEvent 18, 52
XkbBoundsRec 101
Xkb-capable client 3, 21
Xkb-capable Client, glossary entry 219
XkbChangeControls( ) 78
XkbChangeDeviceInfo( ) 208
XkbChangeEnabledControls( ) 54
XkbChangeIndicators( ) 44
XkbChangeMap( ) 121
XkbChangeNames( ) 184
XkbChangeTypesOfKey( ) 137
XkbClampIntoRange 69, 74, 134
XkbClientMapRec 127
XkbColorRec 101
XkbCompatMapNotify 14, 174, 178
XkbCompatMapNotifyEvent 18, 178
XkbCompatMapRec 169
XkbComponentListRec 192
XkbComponentNameRec 192
XkbComponentNamesRec 192
XkbComputeRowBounds( ) 106
XkbComputeSectionBounds( ) 106
XkbComputeShapeBounds( ) 105
XkbComputeShapeTop( ) 105
XkbControlsChangesRec 78
XkbControlsNotify 14, 62
XkbControlsNotifyEvent 18, 79
XkbControlsRec 72

allocating and freeing 80
XkbCopyKeyType( ) 132
XkbCopyKeyTypes( ) 133
XkbCtrlsAction data structure 154
XkbDescRec 27

component references 27
XkbDeviceBell( ) 49
XkbDeviceBellEvent( ) 50
XkbDeviceBtnAction data structure 158
XkbDeviceChangesRec 207
XkbDeviceInfoRec 199
XkbDeviceLedChangesRec 207
XkbDeviceLedInfoRec 199
XkbDeviceValuatorAction data structure 159
XkbDoodadRec 103
XkbEvent unified event type 18
XkbExtensionDeviceNotify 15, 205, 206, 208
XkbExtensionDeviceNotifyEvent 18, 207
XkbFindOverlayForKey( ) 106
XkbForceBell( ) 51
XkbForceDeviceBell( ) 51
XkbFreeClientMap( ) 124
XkbFreeCompatMap( ) 179
XkbFreeComponentList( ) 192
XkbFreeControls( ) 81
XkbFreeDeviceInfo( ) 204
XkbFreeGeomColors( ) 112
XkbFreeGeomDoodads( ) 115
XkbFreeGeometry( ) 115
XkbFreeGeomKeyAliases( ) 111
XkbFreeGeomKeys( ) 110
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XkbFreeGeomOutlines( ) 110
XkbFreeGeomOverlayKeys( ) 114
XkbFreeGeomOverlayRows( ) 114
XkbFreeGeomOverlays( ) 113
XkbFreeGeomPoints( ) 112
XkbFreeGeomProperties( ) 111
XkbFreeGeomRows( ) 113
XkbFreeGeomSections( ) 113
XkbFreeGeomShapes( ) 112
XkbFreeIndicatorMaps( ) 46
XkbFreeKeyboard( ) 29
XkbFreeNames( ) 186
XkbFreeServerMap( ) 125
XKBgeom.h 6
XkbGeometryRec 101
XkbGetAccessXTimeout( ) 62
XkbGetAutoRepeatRate( ) 57
XkbGetAutoResetControls( ) 55
XkbGetBounceKeysDelay( ) 66
XkbGetCompatMap( ) 174
XkbGetControls( ) 77
XkbGetControlsChanges( ) 80
XkbGetDetectableAutorepeat( ) 58
XkbGetDeviceButtonActions( ) 201
XkbGetDeviceInfo( ) 200
XkbGetDeviceInfoChanges( ) 208
XkbGetDeviceLedInfo( ) 202
XkbGetGeometry( ) 104
XkbGetIndicatorChanges( ) 45
XkbGetIndicatorMap( ) 40
XkbGetIndicatorState( ) 40
XkbGetKeyActions( ) 160
XkbGetKeyBehaviors( ) 162
XkbGetKeyboard( ) 28, 197
XkbGetKeyboardByName( ) 194
XkbGetKeyExplicitComponents( ) 163
XkbGetKeyModifierMap( ) 139
XkbGetKeySyms( ) 136
XkbGetKeyTypes( ) 131
XkbGetKeyVirtualModMap( ) 166
XkbGetMap( ) 118
XkbGetNameChanges( ) 186
XkbGetNamedGeometry( ) 105
XkbGetNamedIndicator( ) 41
XkbGetNames( ) 183
XkbGetPerClientControls( ) 81
XkbGetSlowKeysDelay( ) 66
XkbGetState( ) 24
XkbGetStickyKeysOptions( ) 68
XkbGetUpdatedMap( ) 119
XkbGetVirtualMods( ) 165
XkbGetXlibControls( ) 85
XkbGroupAction data structure 146
XkbIgnoreExtension( ) 8
XkbIM_LEDDrivesKB 35, 41
XkbIM_NoAutomatic 35, 42
XkbIM_NoExplicit 35, 41
XkbIM_UseBase 37, 38
XkbIM_UseCompat 38
XkbIM_UseEffective 37, 38
XkbIM_UseLatched 37, 38
XkbIM_UseLocked 37, 38
XkbIM_UseNone 37, 38
XkbIndicatorChangesRec 43
XkbIndicatorDoodadRec 104

XkbIndicatorMapNotify 14, 44
XkbIndicatorMapRec 35
XkbIndicatorNotifyEvent 18, 44
XkbIndicatorRec 34
XkbIndicatorStateNotify 14, 44
XkbInitCanonicalKeyTypes( ) 131
XkbISOAction data structure 151
XkbKB_Default 161
XkbKB_Lock 162
XkbKB_Overlay1 162
XkbKB_Overlay2 162
XkbKB_Permanent 162
XkbKB_RadioGroup 162
XkbKeyAction macro 142
XkbKeyActionEntry macro 142
XkbKeyActionsPtr macro 142
XkbKeyAliasRec 101, 180
XkbKeycodeToKeysym( ) 89
XkbKeyGroupInfo macro 135
XkbKeyGroupsWidth macro 135
XkbKeyGroupWidth macro 136
XkbKeyHasActions macro 141
XkbKeyNameRec 180
XkbKeyNumActions macro 141
XkbKeyNumGroups macro 135
XkbKeyNumSyms macro 136
XkbKeypadIndex canonical key type 129
XkbKeyRec 102
XkbKeySymEntry macro 136
XkbKeySymsOffset macro 136
XkbKeySymsPtr macro 136
XkbKeysymToModifiers( ) 89
XkbKeyType macro 134
XkbKeyTypeIndex macro 134
XkbKeyTypeRec 127
XkbKeyTypesForCoreSymbols( ) 176
XkbKTMapEntryRec 127
XkbLatchGroup( ) 23
XkbLatchModifiers( ) 22
XkbLC_AllControls 85
XkbLC_AlphanumericKeys 193
XkbLC_AlternateGroup 193
XkbLC_AlwaysConsumeShiftAndLock 85
XkbLC_BeepOnComposeFail 85
XkbLC_ComposeLED 85
XkbLC_ConsumeKeysOnComposeFail 85
XkbLC_ConsumeLookupMods 85
XkbLC_Default 193
XkbLC_ForceLatin1Lookup 85
XkbLC_FunctionKeys 193
XkbLC_Hidden 193
XkbLC_IgnoreNewKeyboards 85
XkbLC_KeypadKeys 193
XkbLC_ModifierKeys 193
XkbLC_Partial 193
XKBlib.h 6
XkbLibraryVersion( ) 6
XkbListComponents( ) 191
XkbLockGroup( ) 23
XkbLockModifiers( ) 22
XkbLogoDoodadRec 104
XkbLookupKeyBinding( ) 90
XkbLookupKeySym( ) 89
XkbMapChangesRec 121
XkbMapNotify 14, 87, 88, 122, 178
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XkbMapNotifyEvent 18, 122
XkbMessageAction data structure 155
XkbModAction data structure 144
XkbModActionVMods macro 145
XkbNameChangesRec 184
XkbNamesNotify 14, 185
XkbNamesNotifyEvent 18, 185
XkbNamesRec 180
XkbNewKeyboardNotify 14, 87, 187
XkbNewKeyboardNotifyEvent 18, 188
XkbNoteControlsChanges( ) 80
XkbNoteDeviceChanges( ) 208
XkbNoteIndicatorChanges( ) 45
XkbNoteNameChanges( ) 185
XkbOneLevelIndex canonical key type 129
XkbOpenDisplay( ) 8
XkbOutlineRec 101
XkbOutOfRangeGroupInfo macro 135
XkbOutOfRangeGroupNumber macro 135
XkbOverlayKeyRec 102
XkbOverlayRec 102
XkbOverlayRowRec 102
XkbPointRec 101
XkbPropertyRec 101
XkbPtrAction data structure 147
XkbPtrActionX macro 148
XkbPtrActionY macro 148
XkbPtrBtnAction data structure 148
XkbPtrDfltAction data structure 150
XkbQueryExtension( ) 7
XkbRedirectIntoRange 69, 74, 134
XkbRedirectKeyAction data structure 156
XkbRefreshKeyboardMapping( ) 90
XkbResizeDeviceButtonActions( ) 204
XkbResizeKeyActions( ) 160
XkbResizeKeySyms( ) 138
XkbResizeKeyType( ) 132
XkbRowRec 102
XkbSA_ActionMessage 143, 155
XkbSA_AffectDfltBtn 149
XkbSA_ClearLocks 145, 146
XkbSA_DeviceBtn 143, 158
XkbSA_DeviceValuator 143, 159
XkbSA_DfltBtnAbsolute 150
XkbSA_GroupAbsolute 146, 151
XkbSA_IgnoreVal 159
XkbSA_ISODfltIsGroup 151, 152
XkbSA_ISODNoAffectMods 152
XkbSA_ISOLock 143, 151
XkbSA_ISONoAffectCtrls 151, 152, 153
XkbSA_ISONoAffectGroup 151, 152, 153
XkbSA_ISONoAffectMods 151, 152
XkbSA_ISONoAffectPtr 151, 152, 153
XkbSA_LatchGroup 143, 146
XkbSA_LatchMods 143, 144
XkbSA_LatchToLock 145, 146
XkbSA_LockControls 143, 154
XKbSA_LockDeviceBtn 143
XkbSA_LockDeviceBtn 158
XkbSA_LockGroup 143, 146
XkbSA_LockMods 143, 144
XkbSA_LockNoLock 145, 149, 152, 154, 158
XkbSA_LockNoUnlock 145, 149, 152, 154, 159
XkbSA_LockPtrBtn 143, 149
XkbSA_MessageGenKeyEvent 155

XkbSA_MessageOnPress 155
XkbSA_MessageOnRelease 155
XkbSA_MoveAbsoluteX 147
XkbSA_MoveAbsoluteY 148
XkbSA_MovePtr 143, 147
XkbSA_NoAcceleration 147
XkbSA_NoAction 143
XKbSA_PtrBtn 143
XkbSA_PtrBtn 149
XkbSA_RedirectKey 143, 156
XkbSA_SetControls 143, 154
XkbSA_SetGroup 143, 146
XkbSA_SetMods 143, 144
XkbSA_SetPtrDflt 143, 149
XkbSA_SetValAbsolute 159
XkbSA_SetValCenter 159
XkbSA_SetValMax 159
XkbSA_SetValMin 159
XkbSA_SetValRelative 159
XkbSA_SwitchAbsolute 153
XkbSA_SwitchApplication 153
XkbSA_SwitchScreen 143, 153
XkbSA_UseDfltButton 149
XkbSA_UseModMapMods 145, 152
XkbSAActionSetCtrls macro 155
XkbSAGroup macro 147
XkbSAPtrDfltValue macro 150
XkbSARedirectSetVMods macro 157
XkbSARedirectSetVModsMask macro 157
XkbSARedirectVMods macro 157
XkbSARedirectVModsMask macro 157
XkbSAScreen macro 153
XkbSASetGroup macro 147
XkbSASetPtrDfltValue macro 150
XkbSASetScreen macro 154
XkbSectionRec 103
XkbSelectEventDetails( ) 17
XkbSelectEvents mask constants 17
XkbSelectEvents( ) 16
XkbServerMapRec 141
XkbSetAccessXTimeout( ) 63
XkbSetAutoRepeatRate( ) 57
XkbSetAutoResetControls( ) 55
XkbSetBounceKeysDelay( ) 67
XkbSetCompatMap( ) 177
XkbSetControls( ) 77
XkbSetDebuggingFlags( ) 210
XkbSetDetectableAutorepeat( ) 58
XkbSetDeviceButtonActions( ) 206
XkbSetDeviceInfo( ) 205
XkbSetIgnoreLockMods( ) 70
XkbSetIndicatorMap( ) 42
XkbSetMap( ) 120
XkbSetModActionVMods macro 145
XkbSetNamedIndicator( ) 43
XkbSetNames( ) 183
XkbSetPerClientControls( ) 81
XkbSetPtrActionX macro 148
XkbSetPtrActionY macro 148
XkbSetServerInternalMods( ) 71
XkbSetSlowKeysDelay( ) 66
XkbSetStickyKeysOptions( ) 68
XkbSetXlibControls( ) 85
XkbShapeDoodadRec 103
XkbShapeRec 101
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XkbSI_AllOf 172
XkbSI_AnyOf 172
XkbSI_AnyOfOrNone 172
XkbSI_Exactly 172
XkbSI_NoneOf 172
XkbStateNotify 14, 24, 65
XkbStateNotify event detail masks 24
XkbStateNotifyEvent 18, 25
XkbStateRec 24
Xkbstr.h 6
XkbSwitchScreenAction data structure 153
XkbSymInterpretRec 172
XkbSymMapRec 133
XkbTextDoodadRec 104
XkbTranslateKeyCode( ) 91
XkbTranslateKeySym( ) 90
XkbTwoLevelIndex canonical key type 129
Xkb-unaware client 4, 21
Xkb-unaware Client, glossary entry 219
XkbUpdateMapFromCore( ) 175
XkbUseCoreKbd 10, 15
XkbVirtualModsToReal( ) 32
XkbWrapIntoRange 69, 74, 134
XkbXIDfltID 198
XkbXlibControlsImplemented( ) 85
XKeycodeToKeysym( ), Xkb modifications 88
XKeysymToKeycode( ), Xkb modifications 88
Xlib version required 1
XLookupKeysym( ), Xkb modifications 88
XLookupString( ) 82

function which is equivalent, XkbLookupKeyBinding( ) 90
Xkb modifications 88

XMappingNotify 187
XRebindKeysym( ), Xkb modifications 89
XRefreshKeyboardMapping( )

function which is equivalent, XkbRefreshKeyboardMap-
ping( ) 90

Xkb modifications 88


